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Introduction 
In this document, I give brief discussions of the most common numerical methods used to solve ordinary 
differential equations (both initial value and boundary value), parabolic partial differential equations, 
and elliptic partial differential equations. Most of the discussion centers around Matlab solutions, 
including some built-in solvers, but in a few cases examples are also provided in Python. For every topic, 
there is a discussion of how to validate your solutions. I consider these critical, as we are all susceptible 
to an undeserved trust of our initial attempts at numerical solutions to problems. It takes discipline and 
creativity to properly test our simulations and I hope to foster both with these examples. 

  



Ordinary Differential Equations: Initial Value Problems 
First Order Initial Value Problems 
A general, first-order ordinary differential equation (ODE) can be written as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑,𝑑𝑑) 

Here the function f can be any arbitrary function of t and y. If f is a linear function of y, then this 
differential equation is linear. If f is nonlinear in t, the differential equation is still linear. A general 
solution to this equation will always involve an independent, arbitrary constant which is typically 
determined based on an initial condition. As long as f is continuous, then linear equations will always 
have a unique solution. The situation for nonlinear equations is much less clear. 

Numerical solutions to initial value problems typically involve starting at the initial time (typically t=0) 
and progressing in time using discrete time steps (with h defined as the time between steps). The 
process involves approximating the derivative in terms of these discrete values for y and then using this 
approximation to advance the solution one step at a time. The easiest algorithm for this approach is 
Euler’s method, which assumes that the slope of the solution during a time step depends only on 
variables at the beginning of the step. [Note that Euler’s method has flaws and, for most problems there 
are better algorithms. However, it does help me illustrate the basic process used to numerically solve 
ordinary differential equations.] Euler’s method leads to a solution algorithm that can be written as 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≈
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖

=
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖

ℎ
= 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑖𝑖) 

 

The key here is that we evaluate the derivative using only the values of t and y at the beginning of the 
time step. This simplifies to 

𝑑𝑑𝑖𝑖+1 ≈ 𝑑𝑑𝑖𝑖 + ℎ 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑖𝑖) 

To demonstrate this algorithm, consider the following equation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2𝑑𝑑𝑑𝑑 = 0 

𝑑𝑑(0) = 1 

We know that the solution to this equation is 

𝑑𝑑 = 𝑒𝑒𝑡𝑡2 

Which will allow us to compare results from our numerical algorithm to this known solution. 

To carry out Euler’s method to approximate the solution to the differential equation above, we start at 
t=0 with our known initial value: y(0)=1 and then carry out a solution step-by-step.  

For our model equation, the Euler algorithm simplifies to 



𝑑𝑑𝑖𝑖+1 ≈ 𝑑𝑑𝑖𝑖 + ℎ 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑖𝑖) = 𝑑𝑑𝑖𝑖 + ℎ ∗ 2 ∗ 𝑑𝑑𝑖𝑖 ∗ 𝑑𝑑𝑖𝑖  

Or 

𝑑𝑑𝑖𝑖+1 ≈ 𝑑𝑑𝑖𝑖 ∗ (1 + 2ℎ𝑑𝑑𝑖𝑖) = 𝑑𝑑𝑖𝑖 ∗ (1 + 2ℎ(𝑖𝑖ℎ)) = 𝑑𝑑𝑖𝑖 ∗ (1 + 2𝑖𝑖ℎ2) 

This can be demonstrated in the first few time steps as 

y0=y(0)=1 

y1=y0*(1+2ht0)= y0 

y2=y1*(1+2ht1) =y1*(1+2h2) 

… 

By continuing this step-by-step process, we can generate an approximate solution for as long as we 
please. I will present a graphical solution for this equation, using Euler’s method, after taking a look at a 
second algorithm. 

The 4th order Runge-Kutta algorithm is probably the most commonly used algorithm for a typical initial 
value problem. The algorithm uses a stepwise approach, much like the Euler method, but the time 
stepping algorithm is somewhat more complicated. Specifically, the algorithm is given as: 

𝑘𝑘1 = 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑖𝑖) 

𝑘𝑘2 = 𝑓𝑓 �𝑑𝑑𝑖𝑖 +
ℎ
2

,𝑑𝑑𝑖𝑖 + ℎ
𝑘𝑘1
2
� 

𝑘𝑘3 = 𝑓𝑓 �𝑑𝑑𝑖𝑖 +
ℎ
2

,𝑑𝑑𝑖𝑖 + ℎ
𝑘𝑘2
2
� 

𝑘𝑘4 = 𝑓𝑓(𝑑𝑑𝑖𝑖 + ℎ,𝑑𝑑𝑖𝑖 + ℎ𝑘𝑘3) 

𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖 +
ℎ
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4) 

Though somewhat more complicated than the Euler method, this algorithm still does not require any 
iteration or solutions of algebraic systems, so it is quite efficient. It also can easily solve quite complex 
equations. Hence, it is a workhorse. 

A Matlab implementation of both Euler’s method and the 4th order Runge Kutta method for our model 
problem is provided below. 

clear 
h=0.01; %step size 
tend=2; %time at end of simulation 
time=0:h:tend; 
yinitial=1; %initial value [y(0)] 
yeuler(1)=yinitial; 
yrk(1)=yinitial; 
for i=2:size(time,2) 
    yeuler(i)=yeuler(i-1)+h*f(time(i-1),yeuler(i-1)); 



    yrk(i)=yrk(i-1)+rkstep(time(i-1),yrk(i-1),h); 
end 
yexact=exp(time.^2); 
 
plot(time,yexact,time,yeuler, 'o',time,yrk,'+') 
titlestring=sprintf('Comparison of Numerical Solutions to Exact 
Solution for h=%2.1d',h); 
xlabel('time','FontSize', 18);ylabel('y(t)','FontSize', 
18);title(titlestring) 
legend('exact solution','Euler solution','Runge-Kutta solution') 
 
eulererror=abs((yeuler-yexact)./yexact); 
rkerror=abs((yrk-yexact)./yexact); 
 
figure, semilogy(time,eulererror, 'o',time,rkerror,'+') 
titlestring=sprintf('Comparison of Relative Errors for 
h=%2.1d',h); 
xlabel('time','FontSize', 18); 
ylabel('y(t)','FontSize', 18); 
title(titlestring) 
legend('Euler','Runge-Kutta') 
 
function z=rkstep(t,y,h) 
k1=f(t,y); 
k2=f(t+h/2,y+h*k1/2); 
k3=f(t+h/2,y+h*k2/2); 
k4=f(t+h,y+h*k3); 
z=h/6*(k1+2*k2+2*k3+k4); 
end 
 
function z=f(t,y) 
z=2*y*t; 
end 

 

The resulting solutions, along with the exact solution, are provided below for a time step of h=0.01: 



 

It appears from this plot that both solutions are fairly close to the exact solution, but we can see the 
accuracy better if we plot the relative error for each: 
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From this error plot, it is obvious that the Euler error is fairly large (around 10% at the end), while the 
error for the Runge-Kutta solution is orders of magnitude more accurate (better than 10-7 at the end). 
This demonstrates the value of the Runge-Kutta algorithm. 

Now let’s halve the time step and see the effect. 
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These results show that our solutions improve as the time step gets smaller. In the case of Runge-Kutta, 
halving the time step improved the relative error by a factor of 16. This is consistent with the theoretical 
scaling of h4 for the global error1. 

Built-In Function: ode45 
Matlab has several built-in functions for solving ordinary differential equations. The most commonly 
used function is probably ode45, which employs both 4th and 5th order Runge-Kutta algorithms to allow 
for time step adjustment in order to achieve a desired accuracy. That is, it adjusts the time step as it 
goes, reducing it when the error exceeds the desired accuracy and increasing it when the error is below 
the desired accuracy. Hence, we do not have to specify the time step, we merely provide a function 
defining the differential equation, the desired time interval over which to solve the equation, and the 
initial value. A solution for our model problem is as follows: 

clear 
tspan=[0 2]; %time interval for solution 
yinitial=1; %initial value 
[t,y]=ode45(@f, tspan, yinitial); 
plot(t,y) 
xlabel('time'); ylabel('y'); 
 

 
1 https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html  
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function z=f(t,y) 
z=2*y*t; 
end 

 

This solution uses the default accuracy, which is set to a relative accuracy of 0.001. The code below sets 
values for both the relative tolerance and the absolute tolerance. 

opts = odeset('RelTol',1e-6,'AbsTol',1e-6); 
[t,y] = ode45(@f, tspan, yinitial, opts); 

 

If you want to set a parameter in the function, we can set it in the main code and then pass it into the 
function as follows: 

clear 
tspan=[0 2]; %time interval for solution 
yinitial=1; %initial value 
 
aparam=2; %set a parameter to be used in the function fpar 
[t,y] = ode45(@(t,y) fpar(t,y,aparam), tspan, yinitial); 
 
function z=fpar(t,y,aparam) 
z=aparam*y*t; 
end 

 

New Infrastructure in Recent Versions of Matlab 
Recent versions of Matlab add a new infrastructure for solving ordinary differential equations. A typical 
script for solving our model equation is: 

F = ode; 
F.ODEFcn = @(t,y) 2*y*t; 
F.InitialValue = 1; 
sol = solve(F,0,10); 
plot(sol.Time,sol.Solution,"-o") 

 

Here F is an “ode” object, F.ODEFCN defines our differential equation, F.InitialValue is y(0) and sol 
becomes the solution. Calling the solve function with solve(F,0,10) solves the ode object F from t=0 
through t=10. 

 

Python Solution 
To solve our model equation in Python, use: 

from scipy.integrate import solve_ivp 
import matplotlib.pyplot as plt 
def f(t, y): return 2 * t * y 



sol = solve_ivp(f, [0, 2], [1], rtol = 1e-6) 
print(sol.t) 
print(sol.y) 
plt.plot(sol.t, sol.y.T) 
plt.xlabel('time') 
plt.ylabel('y(t)') 
plt.show() 

 

 

Systems of Initial Value Problems 
To solve a system of ordinary differential equations, we can still use the same routines, but our solutions 
are stored in an array and we must supply a vector of initial values as well as a vector function defining 
the differential equations. Consider the following system: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑 − 𝛼𝛼𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑑𝑑 + 𝛽𝛽𝑑𝑑𝑑𝑑 

Note that this is an example of a predator-prey problem. Consider x as the population of the prey and y 
the population of the predator. So the positive x term in the first equation indicates that the prey 
population would grow exponentially if there were no predators and the negative y term in the second 
equation indicates that the predators would die off if there were no prey. The cross terms, involving the 
product xy, indicate that the growth rate of the prey is lower when there are predators around and that 
the growth rate of the predators increases when there is a lot of prey. 

To solve this system in Matlab, you can do the following: 

F = ode; 
F.ODEFcn = @odefunc; 
F.InitialValue = [20; 20]; 
sol = solve(F,0,30); 
plot(sol.Time,sol.Solution) 
xlabel('time'); 
legend('x','y') 
 
function growthrates=odefunc(t,z) 
x=z(1); 
y=z(2); 
alpha=0.01; beta=0.02; 
growthrates=[x-alpha*x*y; -y+beta*x*y]; 
end 

 

Here I’ve made the arbitrary decision to have x be variable 1 and y be variable 2. Hence, the first entry in 
the InitialValue vector is the initial value for x and the second entry is the initial value for y. Similarly, the 



first term in “growthrates” is dx/dt and the second term is dy/dt. You could switch these, and have y be 
first, but everything has to be changed consistently.  

The solution provided by this code can be visualized as: 

 

Notice how the prey first increases, as the predator population is low, but then the predator population 
rises as the food supply rises. This then causes a decline in the prey population, creating cyclic behavior. 
This can also be visualized as a phase portrait, where we plot x vs y: 
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This should just be one curve, but the error in the solution prevents this. We can do better by asking for 
a tighter tolerance. For example, the following code 

F = ode; 
F.ODEFcn = @odefunc; 
F.InitialValue = [20; 20]; 
F.RelativeTolerance=1e-6 
sol = solve(F,0,30); 
plot(sol.Time,sol.Solution) 
xlabel('time'); 
legend('x','y') 
figure,plot(sol.Solution(1,:), sol.Solution(2,:)) 
xlabel('x'); ylabel('y'); 
 
function growthrates=odefunc(t,z) 
x=z(1); 
y=z(2); 
alpha=0.01; beta=0.02; 
growthrates=[x-alpha*x*y; -y+beta*x*y]; 
end 

 

will produce a phase portrait with a single curve. 
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We can use the same approach to solve a larger system, such as the Lorenz Equations, which solve three 
equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜎𝜎(𝑑𝑑 − 𝑑𝑑) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑(𝜌𝜌 − 𝑧𝑧) − 𝑑𝑑 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑 − 𝛽𝛽𝑧𝑧 

 

The following code will solve the equations 

F = ode; 
F.ODEFcn = @odefunc; 
F.InitialValue = [20; 20; 20]; 
F.RelativeTolerance=1e-6 
sol = solve(F,0,30); 
figure,plot3(sol.Solution(1,:), sol.Solution(2,:), 
sol.Solution(3,:)) 
xlabel('x'); ylabel('y'); zlabel('z'); 
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function growthrates=odefunc(t,res) 
x=res(1); 
y=res(2); 
z=res(3); 
sigma=10; beta=8/3; rho=28; 
growthrates=[sigma*(y-x); x*(rho-z)-y; x*y-beta*z]; 
end 

 

and the resulting phase portrait is now three-dimensional and becomes 

 

 

Note that this system demonstrates chaos. That is, it has two equilibrium points, represented by the two 
neighboring spirals in the phase portrait, but the solution is unable to spiral in to either equilibrium. It 
continuously bounces from one to the other. If we reduce ρ to 14, the system is no longer chaotic and 
the solution settles in on one of the equilibrium points, depending on the initial conditions. 



 

  



Higher Order Initial Value Problems 
We can use these same tools to solve higher order problems. The typical approach is to break the 
equation into a system of first order equations and then solve the system as we did in the lasts section. 
Consider the equation: 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 2𝑑𝑑 = 0 

𝑑𝑑(0) = 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) = 1 

To break this into a system of two first order equations, we begin by defining a second variable, z, such 
that 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑧𝑧 

Given this definition, the second derivative of y will be equal to the first derivative of z. Substituting this 
into our equation we find 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= −2𝑑𝑑 

Our second order equation thus becomes: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑧𝑧 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

= −2𝑑𝑑 

𝑑𝑑(0) = 0 

𝑧𝑧(0) = 1 

A Matlab solution for this system, again using ode45, can be written as follows: 

clear 
tspan=[0 10]; %time interval for solution 
yinitial=[0; 2]; %initial values for [y z] 
 
[t,y] = ode45(@f, tspan, yinitial); 
yanswer=y(:,1); 
zanswer=y(:,2); 
 
plot(t,yanswer,t,zanswer) 
xlabel('time'); ylabel('y'); 
legend('y', 'dy/dt'); 
 
function freturn=f(t,y) 
ysolution=y(1); 



zsolution=y(2); 
freturn=[zsolution; -2*ysolution]; %This gives [dy/dt dz/dt] 
end 

 

Note that the result is an array with one column for the solution for y and the other for the solution for 
z. I have arbitrarily chosen to have the first column represent y and the second represent z. 

A plot of the solutions is: 

 

Python Solution for Second Order Equation 
Python code to solve this problem is: 

import numpy as np 
from scipy.integrate import odeint 
import matplotlib.pyplot as plt 
 
def model(r,t): 
    y=r[0] 
    z=r[1] 
    dydt=z 
    dzdt=-2*y 
    drdt=[dydt, dzdt] 
    return drdt 
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r0=[0,2] 
t = np.linspace(0,10,200) 
r = odeint(model,r0,t) 
plt.plot(t,r[:,0]) 
plt.xlabel('time') 
plt.ylabel('y(t)') 
plt.show() 

 

 

Validation of Initial Value Problems 
To ensure that we obtain accurate numerical solutions to these problems, it is critical that we always 
maintain an appropriate skepticism about the results. There are many ways for error to be introduced to 
a numerical analysis, so constant vigilance is required. Some of the most common error sources are as 
follows: 

• Problems with units 
• Coding mistakes 
• Errors in the model itself 
• Errors in the input data, such as material properties (garbage in, garbage out) 
• Incorrect use of a built-in algorithm (such as ode45) 
• Insufficient choice of numerical parameters (such as the time step in initial value problems, or 

using too few terms in a series approximation) 

To combat these possible errors, the best approach is to have multiple strategies for ensuring the 
validity of your solutions. Some useful approaches include: 

• When you are new to a technique, test it on problems where the solution is known. Start by 
picking some easy problems for which the solution is known and make sure you can match the 
known results with your numerical solution. 

• The most useful approach is something I think of as a global approach. That is, you should have 
some idea of the right answer prior to attempting the numerical solution.  

• Always make sure your solution satisfies the initial conditions. This is generally easily checked 
with a plot of the solution. 

• Convergence study: Change the tolerance (or shrink the time step) and make sure the results 
don’t change 

• Benchmark against known solutions 
• Approximate full problem with something we can solve analytically 
• Test experimentally 

Let’s consider these with an example. Consider the cooling of a cup of coffee. Let’s try to calculate the 
temperature of a cup of coffee that was originally at a temperature of 90 C (around 195F). How long will 
it take to cool to 60 C? If we assume that the entire volume of coffee has a uniform temperature (an 
assumption we will test when we discuss parabolic partial differential equations), then this can be 
modeled as an ordinary differential equation. We will assume all the heat loss is from the liquid surface 



at the top of the mug (which is a pretty good assumption if we have a good quality mug with good 
thermal insulation).  

Assumptions: 

• The heat transfer from the liquid to and from the mug itself is negligible 
• The liquid has uniform temperature at all times. That is, there is no temperature gradient in the 

liquid. 
• There is no air blowing over the liquid surface. This would accelerate the convective cooling, 

changing it from free convection to forced convection. It also would accelerate the mass 
transfer. 

• We will use the properties of water to model coffee. 
• The liquid surface is circular 
• The liquid properties are independent of temperature 

Heat is lost from our cup via radiation, mass transfer (evaporation), and convection from the liquid 
surface (which has a surface area which we will call A)2. The governing equation for the temperature 
becomes: 

𝑚𝑚𝑐𝑐𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜖𝜖𝜎𝜎(𝑑𝑑 − 𝑑𝑑𝑎𝑎)4 − ℎ𝐴𝐴(𝑑𝑑 − 𝑑𝑑𝑎𝑎) −𝑊𝑊∆𝐻𝐻𝑣𝑣 

Where m is the mass of the liquid in the cup, cp is the specific heat of the liquid, T is its temperature, ε is 
the emissivity of the surface, σ is the Stefan-Boltzman constant (5.67x10-8 W/m2-K4), Ta is the air 
temperature, h is the heat transfer coefficient for free convection from the surface, W is the evaporative 
mass flux at the surface, and ∆Hv is the heat of vaporization of the liquid per kg of liquid. 

The governing equation for the mass left in the mug (accounting for evaporation) is 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

= −𝑊𝑊 

The free convection heat transfer coefficient can be approximated by 

ℎ = 1.31 �
𝑑𝑑 − 𝑑𝑑𝑎𝑎
𝐷𝐷

�
1/4

 

where D is the diameter of the liquid surface (assumed to be circular). 

Since we are losing liquid due to evaporation, the liquid mass will be decreasing over time and we need 
a model for the rate at which this mass is lost. We will use 

𝑊𝑊 =
ℎℵ𝐴𝐴

ℵ𝑎𝑎𝑖𝑖𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝐹𝐹
[𝑃𝑃𝑣𝑣(𝑑𝑑) − 𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎)] 

where א represents the molecular weight, Pv is the vapor pressure, and  

 
2 Jean Stephane Condoret, “Teaching Transport Phenomena Around a Cup of Coffee,” https://oatao.univ-
toulouse.fr/1455/ 

https://oatao.univ-toulouse.fr/1455/
https://oatao.univ-toulouse.fr/1455/


𝐹𝐹 =
�𝑃𝑃𝑇𝑇 − 0.5𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎)� − �𝑃𝑃𝑇𝑇 − 𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎)�

𝑙𝑙𝑙𝑙 �𝑃𝑃𝑇𝑇 − 0.5𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎)
𝑃𝑃𝑇𝑇 − 𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎) �

 

where PT is the total pressure at the surface of the liquid. 

For the vapor pressure, we will use 

Pv = 105𝑒𝑒𝑑𝑑𝑒𝑒 �
−40700

8.31
�

1
𝑑𝑑
−

1
373

�� 

where the pressure is in Pa and the temperature is in C. 

The time rate of change of the mass of the liquid in the mug comes from the evaporation model. Hence,  

𝑊𝑊 = −
ℎℵ𝐴𝐴

ℵ𝑎𝑎𝑖𝑖𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝐹𝐹
[𝑃𝑃𝑣𝑣(𝑑𝑑) − 𝑃𝑃𝑣𝑣(𝑑𝑑𝑎𝑎)] 

Code for the numerical solution of this problem is provided below. Here I assumed the following for 
inputs: 

• Liquid surface diameter = 5 cm 
• Initial liquid mass = 0.3 kg 
• Emissivity of liquid = 0.9 
• Air temperature = 20 C 
• Molecular weight for water = 18 g/mol 
• Molecular weight for air = 29 g/mol 
• Ambient air pressure = 05 Pa 
• Specific heat of liquid = 4,000 J/kg-K 
• Specific heat of air = 1,000 J/kg-K 
• Heat of vaporization of liquid is 4.2x106 J/kg 

The code for this simulation is as follows: 

clear variables 
F = ode; 
F.ODEFcn = @odefunc; 
F.InitialValue = [90+273; 0.3]; 
F.RelativeTolerance=1e-6; 
sol = solve(F,0,3000); 
figure,plot(sol.Time,sol.Solution(1,:)-273) 
xlabel('time (s)'); ylabel('temperature (C)'); 
 
figure,plot(sol.Time, sol.Solution(2,:)) 
xlabel('time (s)'); ylabel('mass (kg)'); 
 
function eqnfuncs=odefunc(t,res) 
T=res(1); 
mass=res(2); 
 



D=0.05; A=pi*D^2/4; 
emiss=0.9; stef=5.67e-8; 
Ta=20+273; 
cpliquid=4000; cpair=1000; 
deltaH=4.2e6; 
MWair=29; MWwater=18; 
pt=1e5; %Pa 
 
h=1.31*((T-Ta)/D)^(1/4); 
 
c1=pt-0.5*pv(Ta); 
c2=pt-pv(Ta); 
F=(c1-c2)/log(c1/c2); 
W=h*MWwater/MWair/cpair/F*A*(pv(T)-pv(Ta)); 
 
eqnfuncs=[(-emiss*stef*A*(T-Ta).^4-h*A*(T-Ta)-
W*deltaH)/mass/cpliquid; -W]; 
end 
 
function p=pv(T) 
p=1e5*exp(-40700/8.31*(1/T-1/373)); 
end 

The temperature and mass plots from this simulation are provided below: 
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So, to answer our original question, this simulation indicates that it takes about 2,600 seconds for our 
coffee to cool to 60 C. Note that the simulation predicts that about 3% of our coffee evaporated in 3,000 
seconds. 

Now let’s take some time to check our solution, using the strategies described above. 

First, let’s use some common sense. We all have some experience with hot liquids in a ceramic mug. My 
guess was that it would take about 30 minutes for this cooling to occur. Since the simulation predicted 
45 minutes, I’d say we probably haven’t made any egregious errors. 

Next, we are using many correlations here and we could easily have made an error in implementing 
them. It is also possible that our source from which we retrieved the correlations had made an error. 
Hence, here is a table of some of the relevant parameters at the end of our simulation: 

Parameter Value Units 
Vapor pressure 2773 Pa 

Heat transfer coefficient 6.86 W/m2-K 
Logarithmic mean of partial 

pressure of air 
97,900 Pa 

 

Based on my experience with these parameters, these values seem about right, so that is good 
indication that we haven’t made errors in the correlations. 

Next, we can run separate simulations for evaporative cooling, radiative cooling, and free convection.  
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We see that all of the cooling mechanisms, working alone, do reduce the coffee temperature and the 
evaporative cooling dominates the other two. This is all consistent with expectations. 

Next, we can check our analysis parameters. In this case, this means varying the tolerance for the 
adaptive Runge-Kutta algorithm. The code above sets the Relative Tolerance to a value of 10-6. If we 
reduce the Tolerance by a factor of 100, the temperature at the end of the simulation changes by 2 
parts in 108. That’s definitely a variation we can live with, given the uncertainty in our assumptions and 
correlations, indicating that our initial setting was adequate. 

We can simplify our original differential equation to allow for an analytical solution. This will then allow 
determination of the error in our simulation results, at least for the simplified problem. For example, we 
can solve the problem exactly for the case of convection if we assume a constant heat transfer 
coefficient of 7 MW/m2.  

𝑚𝑚𝑐𝑐𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −ℎ𝐴𝐴(𝑑𝑑 − 𝑑𝑑𝑎𝑎) 

Unlike before, the mass will be constant in this case. The solution is: 

𝑑𝑑 = 𝑑𝑑𝑎𝑎 + (𝑑𝑑0 − 𝑑𝑑𝑎𝑎)exp (−𝑧𝑧𝑑𝑑) 

𝑧𝑧 =
ℎ𝐴𝐴
𝑚𝑚𝑐𝑐𝑝𝑝
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When I run the code above with no evaporation and no radiation, my results agree with this analytical 
solution with a relative error of 3x10-4 at 1,000 seconds. 

It often is also helpful to check the steady state solutions in problems such as this. In our case, the 
steady state solution is quite obvious, as the coffee will asymptotically cool to the air temperature, 
which is 20 C. We can run the simulation for a longer time and, as shown below, we do head towards 
the correct steady state solution. 

 

Finally, a small experiment would go a long way in validating our simulation. We could get a well-
insulated mug, pour in some water that is at 90 C, and then measure the surface temperature as it cools. 
We could even measure the volume of water before and after to check whether our evaporation model 
is reasonable. This isn’t always possible, but is in many cases the best way to validate a model. 

 
Incorporating Events into Solution: ode45 
One final note. An interesting aspect of this problem is that our original question dealt with the time 
that our coffee reaches 60 C, but because we only calculate the temperatures at discrete time steps, we 
will not get a precise point at which we reach 60 degrees. One approach would be to interpolate 
between the last point above 60 and the first point below 60, but there is another way. The new 
infrastructure for solving these types of problems allows for what they call event detection.  
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The approach is to create an event function that describes what events we are searching for and how 
we want them handled. Then we call the ode solver with a few extra parameters to get the event 
information. Our code for this is as follows: 

clear variables 
E = odeEvent; 
E.EventFcn=@mugEventsFcn; 
E.Response="stop"; 
 
F = ode; 
F.ODEFcn = @odefunc; 
F.InitialValue = [90+273; 0.3]; 
F.RelativeTolerance=1e-6; 
F.EventDefinition=E; 
sol = solve(F,0,3000) 
figure,plot(sol.Time,sol.Solution(1,:)-273) 
xlabel('time (s)'); ylabel('temperature (C)'); 
 
function eqnfuncs=odefunc(t,res) 
T=res(1); 
mass=res(2); 
 
D=0.05; A=pi*D^2/4; 
emiss=0.9; stef=5.67e-8; 
Ta=20+273; 
cpliquid=4000; cpair=1000; 
deltaH=4.2e6; 
MWair=29; MWwater=18; 
pt=1e5; %Pa 
 
h=1.31*((T-Ta)/D)^(1/4); 
 
c1=pt-0.5*pv(Ta); 
c2=pt-pv(Ta); 
F=(c1-c2)/log(c1/c2); 
W=h*MWwater/MWair/cpair/F*A*(pv(T)-pv(Ta)); 
 
eqnfuncs=[(-emiss*stef*A*(T-Ta).^4-h*A*(T-Ta)-
W*deltaH)/mass/cpliquid; -W]; 
end 
 
function p=pv(T) 
p=1e5*exp(-40700/8.31*(1/T-1/373)); 
end 
 
function [position,isterminal,direction] = mugEventsFcn(t,y) 
  position = y(1)-(60+273); 
  isterminal = 1; 



  direction = 0; 
end 

 

The function defining our differential equation does not change. The key is we add an event function, 
seen at the bottom of the script above. The “position” variable defines a function that will be zero when 
our event is reached. The “isterminal” variable says to stop the execution when the event is reached. 
There are other “isterminal” options available. Everything else is pretty straightforward. 

Once we have this event code prepared, we can run the script and query sol.Time(end) and we find that 
the coffee reaches 60 C at 2594 seconds, which is more precise than our previous estimate which 
resulted from a glance at the plot. 

 

 

 

  



Ordinary Differential Equations: Boundary Value Problems 
Boundary value problems are very similar to the previously discussed initial value problems, except 
rather than applying all known conditions at one point, you apply them at two or more points. Typically 
these problems involve spatial variations in the dependent variables, rather than time, so common 
applications involve heat conduction, fluid flow, beam deflection, etc. As a model, consider  

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 𝑑𝑑 = 1 

𝑑𝑑(0) = 1 

𝑑𝑑 �
𝜋𝜋
2
� = 0 

Finite Difference Approach 
One common approach for solving problems such as this is the finite difference method. In this case you 
divide the region 0<x<π/2 into small segments and approximate the differential equation as a series of 
algebraic equations. For example, if we divide our region into four pieces, it might look something like 
this 

 

The boundary points are already filled because those values are given by the boundary conditions. 
Therefore, we have three unknowns and need three equations to solve the system. Hence, we write our 
approximation for the differential equation at each of the internal points and that gives us what we 
need. 

To convert the differential equation to an approximate algebraic equation, we can rewrite the second 
derivative term at point xi as 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

≈
𝑑𝑑𝑖𝑖−1 − 2𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1

𝑠𝑠2
 

where s is the distance between consecutive x values. Using this approximation and substituting it into 
the differential equation yields 

𝑑𝑑𝑖𝑖−1 − 2𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1
𝑠𝑠2

+ 𝑑𝑑𝑖𝑖 ≈ 1 



or 

𝑑𝑑𝑖𝑖−1 − (2 − 𝑠𝑠2)𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1 ≈ 𝑠𝑠2 

 

If we write this equation at points 1, 2 and 3, we get 

𝑑𝑑0 − (2 − 𝑠𝑠2)𝑑𝑑1 + 𝑑𝑑2 ≈ 𝑠𝑠2 

𝑑𝑑1 − (2 − 𝑠𝑠2)𝑑𝑑2 + 𝑑𝑑3 ≈ 𝑠𝑠2 

𝑑𝑑2 − (2 − 𝑠𝑠2)𝑑𝑑3 + 𝑑𝑑4 ≈ 𝑠𝑠2 

If we substitute the known values for y0 and y4, then the system is easily solved for the internal values 
of y. We can write this system in matrix form as 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
1 −(2 − 𝑠𝑠2) 1 0 0
0 1 −(2 − 𝑠𝑠2) 1 0
0 0 1 −(2 − 𝑠𝑠2) 1
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑑𝑑0
𝑑𝑑1
𝑑𝑑2
𝑑𝑑3
𝑑𝑑4⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧ 1
𝑠𝑠2
𝑠𝑠2
𝑠𝑠2
0 ⎭
⎪
⎬

⎪
⎫

 

 

This is easily solved. Note that the first row here defines the boundary condition at x=0, the last row 
defines the boundary condition at x= π/2, and the rest of the matrix can be thought of as a tridiagonal 
matrix with constant terms. Hence, this is easily generalized to any number of mesh points by adjusting 
the sizes of the matrix and vectors and modifying s accordingly. A generalized code for solving this 
problem is as follows: 

N=40; %number of divisions on interval 
s=pi/2/N; %mesh spacing 
v=ones(N,1); 
A=-(2-s^2)*eye(N+1)+diag(v,1)+diag(v,-1); 
A(1,2)=0; A(N+1,N)=0; 
A(1,1)=1; A(N+1,N+1)=1; 
b=s^2*ones(N+1,1); 
b(1)=1; %boundary condition at x=0 
b(N+1)=0; %boundary condition at x=pi/2 
x=linspace(0,pi/2,N+1); %fill vector with x values 
yexact=1-sin(x); 
y=A\b; %solve the system 
plot(x,y,'o',x,yexact) 
xlabel('x'); ylabel('y'); 
legend('finite differences - N=40 divisions', 'exact') 

 

The results for 40 divisions are as follows: 



 

Built-In Function: bvp4c 
Matlab has a built-in routine called bvp4c that can be used to solve these types of problems. An 
advantage for this routine is that it will solve nonlinear equations, whereas the matrix approach 
provided previously would have to be modified to handle nonlinearity. To solve our model equation 
using bvp4c we first must break the second order equation into two first order equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑧𝑧 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

= 1 − 𝑑𝑑 

𝑑𝑑(0) = 1 

𝑑𝑑 �
𝜋𝜋
2
� = 0 

The code to solve this system is as follows: 

clear 
xlow=0; xhigh=pi/2; %set boundary locations 
xint=linspace(xlow, xhigh, 41); %determine x locations in mesh 
solinit= bvpinit(xint,[1 -1]); %set initial guesses for y and z 
sol = bvp4c(@bvp4ode, @bvp4bc, solinit); %solve the system 
yexact=1-sin(xint); %exact solution for comparison 
Sxint= deval(sol, xint); %evaluate solution at x values 
plot(xint, Sxint(1,:),'o',xint, yexact)  
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xlabel('x'); ylabel('y'); 
legend('bvp4c solution', 'exact') 
 
function dydx= bvp4ode(x,w)  
dydx= [w(2) 1-w(1)]; %define differential equations 
end 
 
function res = bvp4bc(wa,wb)  
res = [wa(1)-1 wb(1)]; %define boundary conditions  
end 

 

In this code I assume that w(1) represents y and w(2) represents z. The bvpinit call sets the initial 
values for y and z. This is necessary because the bvp4c function is iterative and requires a guess to start 
the iterations. Some equations will converge with a wide range of guesses, while others require a fairly 
accurate guess for convergence. In this call, I use the parameter [1, -1], indicating that I guess y=1 and 
z=-1 for all values of x. You can provide full vectors for these guesses if needed. 

The bvp4ode function defines our differential equations. The bvp4bc defines our two boundary 
conditions by setting up two vector elements that will both be 0 when the solution is found. Here wa is 
the solution vector at x=0 and wb represents the solution at x=π/2. Hence wa(1) represents y(0) and 
wb(1) represents y(π/2). If, for example, we needed to use the first derivative of y at x=(π/2), we would 
use wb(2). 

 

Python Solution 
To solve our model equation in Python, use: 

import math 
import numpy as np 
import matplotlib.pyplot as plt 
len=math.pi/2 
numpts=41 
h=len/(numpts-1) 
diagv=np.ones(numpts)*(-1)*(2-h**2) 
offvec=np.ones(numpts-1) 
A=np.diag(diagv)+np.diag(offvec,1)+np.diag(offvec,-1) 
A[0,0]=1 
A[0,1]=0 
A[numpts-1,numpts-1]=1 
A[numpts-1,numpts-2]=0 
B=np.ones(numpts)*h**2 
B[0]=1 
B[numpts-1]=0 
y=np.linalg.solve(A,B) 
x=np.linspace(0,len,numpts) 
plt.plot(x,y) 
 



There also is a built-in python routine called solve_bvp that we can use to solve boundary value 
problems. The solution for our model problem is  
 

import numpy as np 
import math 
from scipy.integrate import solve_bvp 
import matplotlib.pyplot as plt 
def fun(x, y): 
    return np.vstack((y[1], 1-y[0])) 
def bc(ya, yb): 
    return np.array([ya[0]-1, yb[0]]) 
n = 41 
x = np.linspace(0, math.pi/2, n) 
y = np.ones((2, x.size)) 
sol = solve_bvp(fun, bc, x, y, tol=1e-4) 
plt.plot(sol.y[0]) 
plt.show() 

 

 
Problems with Boundary Conditions that Depend on First Derivative (Neumann) 
Some equations will involve the first derivative in the boundary conditions. This can be handled in the 
same way as the equation discussed above, but we have to find a way to address the boundary 
condition. 

Consider the problem of heat conduction in a cooling fin, governed by 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

−
ℎ𝐶𝐶
𝑘𝑘𝐴𝐴

�𝑑𝑑 − 𝑑𝑑𝑓𝑓� = 0 

With boundary conditions 

𝑑𝑑(0) = 𝑑𝑑0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝐿𝐿

= 0 

Here T is the temperature in the cooling fin, h is the heat transfer coefficient between the fin surface 
and the coolant, C is the circumference of the fin, k is the thermal conductivity of the fin, A is the cross-
sectional area, Tf is the cooling fluid temperature, and L is the length of the fin. The second boundary 
condition assumes that there is no heat lost from the end of the fin. 

We begin by deriving our approximate (algebraic) equation for the differential equation as follows: 

𝑑𝑑𝑖𝑖−1 − 2𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1
𝑠𝑠2

− 𝛽𝛽�𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑓𝑓� = 0 

𝛽𝛽 =
ℎ𝐶𝐶
𝑘𝑘𝐴𝐴

 



Or 

𝑑𝑑𝑖𝑖−1 − 2𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1 − 𝛽𝛽𝑠𝑠2�𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑓𝑓� = 0 

𝑑𝑑𝑖𝑖−1 − 𝑑𝑑𝑖𝑖(2 + 𝛽𝛽𝑠𝑠2) + 𝑑𝑑𝑖𝑖+1 = −𝛽𝛽𝑠𝑠2𝑑𝑑𝑓𝑓 

To treat the boundary condition at x=L we can approximate the first derivative at x=L as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝐿𝐿

≈
𝑑𝑑𝑁𝑁+1 − 𝑑𝑑𝑁𝑁−1

2𝑠𝑠
 

Here I assume that TN is the temperature at the last point, such that TN+1 is actually outside our region of 
interest. However, this approach provides better accuracy than if we just define the first derivative in 
terms of the last two mesh points. Using this approximation for our boundary condition of zero slope 
gives the following relationship: that TN-1=TN+1.  

This result can be substituted into our finite difference approximation of the differential equation for 
i=N, giving 

  
𝑑𝑑𝑁𝑁−1 − 𝑑𝑑𝑁𝑁(2 + 𝛽𝛽𝑠𝑠2) + 𝑑𝑑𝑁𝑁+1 = −𝛽𝛽𝑠𝑠2𝑑𝑑𝑓𝑓 

or 

2𝑑𝑑𝑁𝑁−1 − 𝑑𝑑𝑁𝑁(2 + 𝛽𝛽𝑠𝑠2) = −𝛽𝛽𝑠𝑠2𝑑𝑑𝑓𝑓 

 
This last step eliminated any reference to points outside of our region of interest. Now we can solve our 
system by writing this equation for the last point and using our conventional equations for the other 
points. The code for this is as follows: 

clear variables 
pinradius=0.003; %meters 
C=2*pi*pinradius; %circumference 
A=pi*pinradius^2; %cross sectional area 
h=1e3; %W/m^2-K heat transfer coefficient 
k=100; %W/m=K thermal conductivity 
Tbase=100; %centrigrade 
Tfluid=25; %centigrade 
pinlength=0.02; %meters 
N=40; %number of divisions on interval 
s=pinlength/N; %mesh spacing 
beta=h*C/k/A; 
v=ones(N,1); 
A=-(2+beta*s^2)*eye(N+1)+diag(v,1)+diag(v,-1); 
A(1,2)=0; A(N+1,N)=2; 
A(1,1)=1; 
b=-beta*s^2*Tfluid*ones(N+1,1); 
b(1)=Tbase; %boundary condition at x=0 
x=linspace(0,pi/2,N+1); %fill vector with x values 



y=A\b; %solve the system 
plot(x,y,'o') 
xlabel('x'); ylabel('Temperature (C)'); 
The figure resulting from this code is 

 

Neumann Boundary Conditions with bvp4c 
We can also use bvp4c to solve this problem. The code is as follows: 

clear variables 
global beta Tfluid Tbase 
pinradius=0.003; %meters 
C=2*pi*pinradius; %circumference 
A=pi*pinradius^2; %cross sectional area 
h=1e3; %W/m^2-K heat transfer coefficient 
k=100; %W/m=K thermal conductivity 
Tbase=100; %centrigrade 
Tfluid=25; %centigrade 
pinlength=0.02; %meters 
 
beta=h*C/k/A; 
 
N=41; %number of mesh points 
xlow=0; xhigh=pinlength; %set boundary locations 
xint=linspace(xlow, xhigh, N); %determine x locations in mesh 
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solinit= bvpinit(xint,[Tbase -(Tbase-Tfluid)/pinlength]); %set 
initial guesses for temperatureand gradient 
sol = bvp4c(@bvp4ode, @bvp4bc, solinit); %solve the system 
Sxint= deval(sol, xint); %evaluate solution at x values 
plot(xint, Sxint(1,:),'o')  
xlabel('x'); ylabel('Temperature (C)'); 
 
function dydx= bvp4ode(x,w)  
global beta Tfluid Tbase 
dydx= [w(2) beta*(w(1)-Tfluid)]; %define differential equations 
end 
 
function res = bvp4bc(wa,wb)  
global beta Tfluid Tbase 
res = [wa(1)-Tbase wb(2)]; %define boundary conditions 
end 

  



Validation of Boundary Value Problems 
As a reminder, the list of strategies that we used for initial value problems was 

• When you are new to a technique, test it on problems where the solution is known. Start by 
picking some easy problems for which the solution is known and make sure you can match the 
known results with your numerical solution. 

• The most useful approach is something I think of as a global approach. That is, you should have 
some idea of the right answer prior to attempting the numerical solution.  

• Always make sure your solution satisfies the boundary conditions. This is generally easily 
checked with a plot of the solution. 

• Convergence study 
• Benchmark against known solutions 
• Approximate full problem with something we can solve analytically 
• Test experimentally 

These still apply for boundary value problems. As a model, consider the equations: 

𝜀𝜀
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ (1 + 𝜀𝜀)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑 = 0 

where ε is small relative to 1. The boundary conditions are y(0)=0 and y(1)=1. What we would like to 
know is the value of y at x=0.5. In this case, we don’t have any connection to the real world, so our 
intuition is somewhat limited, as is our opportunity for testing. In this case, we will focus on a 
convergence study and the use of approximate solutions. This equation actually has a known analytical 
solution, so we can use that to study the effect of mesh spacing on the convergence of the relative 
error. The exact solution is 

𝑑𝑑 =
𝑒𝑒−𝑥𝑥 − 𝑒𝑒−𝑥𝑥/𝜀𝜀

𝑒𝑒−1 − 𝑒𝑒−1/𝜀𝜀  

and the value of y at x=0.5 is 1.6306. Now we will carry out a set of runs for different values of ε and 
different mesh spacings to tabulate the effects. 

Values of ε Number of Divsions Used Relative Error 
0.1 20 4e-6 

 40 3e-7 
 80 2e-8 
 160 6e-10 

0.01 20 1e-6 
 40 2e-7 
 80 7e-10 
 160 2e-11 

 

Now let’s consider some approximate solutions. In this case, it is instructive to plot the solution for 
different values of ε to develop an understanding of its character. 



 

Here we see that as ε decreases, there  is a boundary layer forming near the origin. 

In this case, the 𝜀𝜀 parameter, which is stated to be small, provides an opportunity for perturbation 
theory. In this case, we seek a solution of the form: 

𝑑𝑑 ≈ 𝑑𝑑0(𝑑𝑑) + 𝑑𝑑1(𝑑𝑑)𝜖𝜖 + ⋯+ 𝑑𝑑𝑛𝑛(𝑑𝑑)𝜀𝜀𝑛𝑛 

Substituting this into the original equation and equating terms with powers of ε, we obtain 

𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑

+ 𝑑𝑑0 = 0 

This should provide a solution far away from the boundary layer, so we can look at the solution to this 
equation and make sure it matches the far field solution. Hence we can solve this first order equation 
and use the boundary condition at x=1 to form the far-field solution. The result is 

𝑑𝑑0(𝑑𝑑) = 𝑒𝑒1−𝑥𝑥  

The results are as follows (for ε=0.1). 
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It is apparent that this far-field solution is matching well with the numerical solution of the original 
equation, so this gives us faith that our numerical solution is working. We can take this perturbation 
theory further and find a solution for the boundary layer itself. In this case, it can be shown that for 
small values of ε and for values of x near the origin, the solution can be approximated as: 

𝑑𝑑(𝑑𝑑) ≈ 𝑒𝑒�1 − 𝑒𝑒−𝑥𝑥/𝜀𝜀� 

We can put this layer approximation together with the previously derived far-field solution and get an 
approximation that does a reasonable job for all x. The results are as follows (zooming in near the 
origin): 
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Again, the approximate solution helps to validate the numerical solution. 

There won’t always be a perturbation solution available to us for validation, but there often are other 
approximate solutions available, for example by removing certain nonlinearities that prevent an 
analytical solution. The key to the entire process is to always retain a skepticism about your numerical 
solutions. 
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Partial Differential Equations: Parabolic 
Parabolic partial differential equations are typically time-dependent problems in one spatial dimension. 
More formally, we can define a general linear partial differential equation as follows: 

𝐴𝐴
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 𝐵𝐵
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

+ 𝐶𝐶
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 𝐷𝐷
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝐸𝐸
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝐹𝐹𝑢𝑢 + 𝐺𝐺 = 0 

where the capital letters represent functions of x and y. In this form, a parabolic partial differential 
equation results when  

𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0 

As a model, consider the parabolic partial differential equation: 

𝜕𝜕𝑢𝑢(𝑑𝑑, 𝑑𝑑)
𝑑𝑑𝑑𝑑

=
𝜕𝜕2𝑢𝑢(𝑑𝑑, 𝑑𝑑)
𝜕𝜕𝑑𝑑2

 

on the region  

0 < 𝑑𝑑 < 1 

with initial condition: 

𝑢𝑢(𝑑𝑑, 0) = φ (𝑑𝑑) 

and boundary conditions: 

𝑢𝑢(0, 𝑑𝑑) = 𝑢𝑢(1, 𝑑𝑑) = 0 

The analytical solution to this equation is: 

𝑢𝑢(𝑑𝑑, 𝑑𝑑) = �𝐴𝐴𝑛𝑛𝑒𝑒𝑑𝑑𝑒𝑒[−(𝑙𝑙𝜋𝜋)2𝑑𝑑]𝑠𝑠𝑖𝑖𝑙𝑙(𝑙𝑙𝜋𝜋𝑑𝑑)
∝

𝑛𝑛=1

 

𝐴𝐴𝑛𝑛 = 2� 𝜑𝜑(𝑑𝑑) sin(𝑙𝑙𝜋𝜋𝑑𝑑)𝑑𝑑𝑑𝑑
1

0
 

If we choose our initial conditions to be 

𝜑𝜑(𝑑𝑑) = sin (𝜋𝜋𝑑𝑑) 

then we obtain 

𝐴𝐴𝑛𝑛 = 2� sin (𝜋𝜋𝑑𝑑) sin(𝑙𝑙𝜋𝜋𝑑𝑑)𝑑𝑑𝑑𝑑
1

0
= �1 𝑙𝑙 = 1

0 𝑙𝑙 > 1 

which leaves us with 

𝑢𝑢(𝑑𝑑, 𝑑𝑑) = 𝑒𝑒𝑑𝑑𝑒𝑒(−𝜋𝜋2𝑑𝑑) 𝑠𝑠𝑖𝑖𝑙𝑙(𝜋𝜋𝑑𝑑) 

 

 



Finite Difference Methods: Explicit 
To solve this equation numerically, we will again employ the finite difference method. We will divide 
time and space in such a way that the time steps and spatial divisions are uniform. We will refer to the 
values of u on this grade as ui,j where i refers to a spatial point on the mesh and j refers to a temporal 
point. Give this convention, we can approximate our partial differential equation at point i,j as: 

𝑢𝑢𝑖𝑖,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖,𝑗𝑗
𝑤𝑤

=
𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗

𝑠𝑠2
 

where w represents the time between consecutive time steps and s represents the distance between 
consecutive spatial steps. By writing the spatial term at time j, we have created an explicit algorithm. For 
this approach, it is quite simple to derive a stepping algorithm as follows: 

𝑢𝑢𝑖𝑖,𝑗𝑗+1 = 𝑢𝑢𝑖𝑖,𝑗𝑗 +
𝑤𝑤
𝑠𝑠2
�𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗� 

With this approach, we can begin at the beginning of time (t=0) with our initial conditions and then 
write the results at the first time step (j=1) in terms of the initial values. Once that is complete, we can 
move on to the second time step and calculate all the values in terms of the results for the first step. We 
can continue this indefinitely without any iteration or solution of a linear system of equations. However, 
this simplicity comes at a cost since, as I’ll discuss later, because it is numerically unstable for certain 
combinations of w and s. 

Finite Difference Methods: Implicit 
To avoid this instability, we can employ an implicit algorithm, which writes the spatial term at time j+1 
as follows: 

𝑢𝑢𝑖𝑖,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖,𝑗𝑗
𝑤𝑤

=
𝑢𝑢𝑖𝑖−1,𝑗𝑗+1 − 2𝑢𝑢𝑖𝑖,𝑗𝑗+1 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗+1

𝑠𝑠2
 

Now we collect terms at common time steps, according to  

−
𝑤𝑤
𝑠𝑠2
𝑢𝑢𝑖𝑖−1,𝑗𝑗+1 + �1 + 2

𝑤𝑤
𝑠𝑠2
� 𝑢𝑢𝑖𝑖,𝑗𝑗+1 −

𝑤𝑤
𝑠𝑠2
𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 = 𝑢𝑢𝑖𝑖,𝑗𝑗  

The solution approach here is to write a system of algebraic equations for the results to the end of the 
first time step in terms of the known initial values and then solve that system for those values at the end 
of the first step. Then we move on from time step to time step, solving a linear system of equations each 
time before moving on. This is more work than the explicit method, but it has the advantage of being 
stable for all combinations of w and s. 

Sample code, employing both the explicit and implicit approaches is as follows: 

clear variables 
%explicit parabolic PDE 
% 
length=1; 
ndiv=10; %number of spatial divisions 
h=length/ndiv; %mesh spacing 
alpha=0.25; 
dt=alpha*h^2; %s 



xvals=linspace(0,length,ndiv+1); 
xvalshires=linspace(0,length,101); 
% 
ntimes=50; %number of time steps to do 
time=zeros(1,ntimes+1); 
uinitial=sin(pi*xvals); 
uinitialhires=sin(pi*xvalshires); 
 
uboundary=0; 
u=zeros(ndiv+1,1); 
umid=zeros(1,ntimes+1); 
umidimplicit=zeros(1,ntimes+1); 
uold=uinitial; %fill temperature vector with zeros 
umid(1)=uinitial(ndiv/2+1); 
 
for i=1:ntimes 
    time(i+1)=i*dt; 
    u(1)=uboundary; 
    u(ndiv+1)=uboundary; 
    for j=2:ndiv 
        u(j)=(1-2*alpha)*uold(j)+alpha*(uold(j-1)+uold(j+1)); 
    end 
    uold=u; 
    umid(i+1)=u(ndiv/2+1); 
end 
ufinaldist=u; 
 
umidexact=exp(-pi^2*time); 
 
figure,plot(time,umid,'x',time,umidexact) 
xlabel('time'); ylabel('u'); 
legend('numerical explicit','exact') 
 
uexactdist=exp(-pi^2*time(end))*sin(pi*xvalshires); 
 
figure,plot(xvals,ufinaldist,'x',xvalshires,uexactdist,xvalshires
,uinitialhires) 
xlabel('x'); ylabel('u'); 
legend('final: explicit', 'final exact','initial condition') 
 
%start implicit solution 
umidimplicit(1)=uinitial(ndiv/2+1); %initial centerline 
temperature 
u=uinitial'; %fill temperature vector with zeros 
a=(1+2*alpha)*eye(ndiv+1)-alpha*diag(ones(ndiv,1)',1)-
alpha*diag(ones(ndiv,1)',-1); 
a(1,1)=1; a(1,2)=0; a(ndiv+1,ndiv+1)=1; a(ndiv+1,ndiv)=0; 
for i=1:ntimes 



    b=u; 
    b(1)=0; b(ndiv+1)=0; 
    u=a\b; 
    umidimplicit(i+1)=u(ndiv/2+1); 
end 
figure, plot(time,umidimplicit,'o',time,umid,'x',time,umidexact) 
xlabel('time'); ylabel('u'); 
legend('implicit','explicit','exact') 
 
expliciterror=(umid-umidexact)./umidexact; 
impliciterror=(umidimplicit-umidexact)./umidexact; 
figure,semilogy(time,abs(impliciterror),'x',time,abs(expliciterro
r),'o') 
xlabel('time'); ylabel('relative error'); 
legend('implicit','explicit') 

 

This script uses 10 spatial divisions and 50 time steps over a total time of 0.125 seconds, resulting in 

𝑤𝑤
𝑠𝑠2

= 0.25 

The results for the centerline temperature as a function of time, using the explicit algorithm, compared 
to the exact solution, are as follows: 
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For the same case, we can also visualize the final spatial distribution of u as a function of x and compare 
the numerical and exact results.  

 

To demonstrate the susceptibility of the explicit solution to instability, we can increase the time step by 
a factor of 4, such that 

𝑤𝑤
𝑠𝑠2

= 1 

In this case, the plot of the central value of u as a function of time reveals the instability: 
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It is evident here that employing the explicit solution, which might be advantageous in some 
circumstances, requires the analyst to be vigilant about choosing appropriate values for the time and 
spatial step. To this end, it can be shown that the explicit solution will be stable when 

𝑤𝑤
𝑠𝑠2

< 0.5 

To demonstrate the innate stability of the implicit algorithm, we can compare the implicit and explicit 
algorithm results for the central value of u.  
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This is perhaps better visualized with a semilog plot of the relative error for the two numerical solutions: 
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In general, we would use more spatial and temporal points in a solution such as this. As an example, 
consider the problem solved above with 200 spatial divisions and 100,000 time steps over a total time of 
0.025 seconds. This gives us 

𝑤𝑤
𝑠𝑠2

= 0.01 

The resulting relative accuracy plot becomes 
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You can see that the relative accuracy has improved by several orders of magnitude. 

Built-In Function: pdepe 
Matlab has a built-in function called pdepe for solving parabolic partial differential equations. It solves 
partial differential equations of the form: 

𝑐𝑐 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

= 𝑑𝑑−𝑚𝑚
𝜕𝜕
𝜕𝜕𝑑𝑑

�𝑑𝑑𝑚𝑚𝑓𝑓 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
�� + 𝑠𝑠 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,

𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
� 

The parameter m is used to allow for different coordinate systems. That is, m=0, for cartesian symmetry, 
1 for cylindrical symmetry, and 2 for spherical symmetry. For our model problem, we can use the 
following: 

𝑚𝑚 = 0 

𝑐𝑐 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
� = 1 

𝑓𝑓 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
� =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

 

𝑠𝑠 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
� = 0 
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We use a user-defined function to define the initial distribution for u. The boundary conditions are set in 
a separate function, using the following algorithm: 

𝑒𝑒(𝑑𝑑, 𝑑𝑑,𝑢𝑢) + 𝑞𝑞(𝑑𝑑, 𝑑𝑑)𝑓𝑓 �𝑑𝑑, 𝑑𝑑,𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑
� = 0 

We set values for pl and ql to define the left boundary condition and pr and qr to define the right 
boundary condition. Since our function for f is just the gradient of u, then ql and qr will be zero when our 
boundary conditions do not involve the gradient (which is the case for our model problem) and non-zero 
when the boundary conditions do involve the gradient. For our model problem, we thus have 

𝑒𝑒𝑙𝑙 = 𝑢𝑢𝑙𝑙 

𝑞𝑞𝑙𝑙 = 0 

𝑒𝑒𝑝𝑝 = 𝑢𝑢𝑝𝑝 

𝑞𝑞𝑝𝑝 = 0 

Sample code for our model equation is as follows: 

length=1; 
tend=0.125; 
 
m = 0; 
x = linspace(0,length,201); 
t = linspace(0,tend,50); 
 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 
 
figure, plot(x,u(end,:)) 
title(strcat('Solution at t = ', num2str(tend))) 
xlabel('x') 
ylabel('u') 
 
figure, plot(t,u(:,101)) 
xlabel('t') 
ylabel('u') 
 
uexact=exp(-pi^2*t); 
figure,plot(t,uexact) 
relerror=(u(:,101)'-uexact)./uexact; 
figure, plot(t,relerror,'o') 
xlabel('time'); ylabel('u'); 
 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c=1; 
f = DuDx; 
s = 0; 



end 
 
function u0 = pdex1ic(x) 
u0 = sin(pi*x); 
end 
 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = ul; 
ql = 0; 
pr = ur; 
qr = 0; 
end 

 

A plot of the relative error resulting from this code is 

 

To improve the accuracy, we can set one or both of the RelTol and AbsTol parameters with a command 
such as: 

options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t,options); 

 

which gives, for our model problem, 
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Python Solution 
A python solution to the problem is as follows: 

import math 
import numpy as np 
import matplotlib.pyplot as plt 
n=10 
imid=round(n/2) 
L=1 
h=L/n 
alpha=0.25 
dt=alpha*h**2 
ntimes=50 
uright=0 
uleft=0 
alpha=dt/h**2 
diagv=np.ones(n+1)*(1+2*alpha) 
offvec=np.ones(n)*(-1)*alpha 
mymat=np.diag(diagv)+np.diag(offvec,1)+np.diag(offvec,-1) 
mymat[0,0]=1 
mymat[0,1]=0 
mymat[n,n]=1 
mymat[n,n-1]=0 
mytime=np.zeros(ntimes) 
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myu=np.zeros(ntimes) 
xvals=np.linspace(0,L,n+1) 
ures=np.sin(np.pi*xvals) 
myu[0]=ures[imid] 
time=dt 
for i in range(0, ntimes): 
    b=ures 
    b[0]=uleft 
    b[n]=uright 
    uout=np.linalg.solve(mymat,b) 
    ures=uout 
    time=time+dt 
    mytime[i]=time 
    myu[i]=uout[imid] 
 
plt.plot(mytime, myu) 

 

 

Validation of Parabolic Partial Differential Equations 
In validating partial differential equations, we can still use the approaches discussed for ordinary 
differential equations: 

• When you are new to a technique, test it on problems where the solution is known. Start by 
picking some easy problems for which the solution is known and make sure you can match the 
known results with your numerical solution. 

• The most useful approach is something I think of as a global approach. That is, you should have 
some idea of the right answer prior to attempting the numerical solution.  

• Always make sure your solution satisfies the initial conditions. This is generally easily checked 
with a plot of the solution. 

• Convergence study 
• Benchmark against known solutions 
• Approximate full problem with something we can solve analytically 
• Test experimentally 

However, we have one critical new step which is to employ the use of steady state solutions. Quite often 
we can calculate the steady state solution of a parabolic partial differential equation analytically, which 
allows us to test our transient solution by checking the long term behavior against our analytical steady 
state solution. 

To demonstrate this, let’s revisit the coffee mug cooling from before. In modeling the coffee mug, we 
assumed that any temperature gradients within the coffee were small. We can test this assumption 
using a parabolic PDE. In doing so, we will make some assumptions to simplify the model. Most 
importantly, properly modeling the problem would require that we consider evaporation of the coffee. 
However, doing so would require that we consider the impact of the moving boundary, which recedes as 
the coffee evaporates. There are models for this, but they are beyond the scope of this document. 



Hence, we will model the coffee volume as fixed, but will attempt to include the cooling effect of the 
evaporation through an equivalent heat transfer coefficient at the surface. This model would be 
deficient if our goal was to properly model the cooling of coffee in a mug, but is probably adequate if 
our only goal is to estimate the impact of temperature gradients within the mug. 

Using the assumptions described above, and assuming that the lateral gradients are negligible, we arrive 
at the following parabolic PDE for our mug: 

𝜌𝜌𝑐𝑐𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

 

with boundary conditions 

−𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0, 𝑑𝑑) = ℎ[𝑑𝑑(0, 𝑑𝑑) − 𝑑𝑑𝑎𝑎] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐷𝐷, 𝑑𝑑) = 0 

and initial condition 

𝑑𝑑(𝑑𝑑, 0) = 𝑑𝑑0 

 

Here ρ is the coffee density, cp is the specific heat of the coffee, k is the thermal conductivity of the 
coffee, h is the equivalent heat transfer coefficient accounting for radiation, convection, and 
evaporation, D is the depth of the coffee in the mug, and T0 is the initial coffee temperature, which is 
assumed to be uniform. To be consistent with our previous solution, we will take T0 to be 90 C, Ta to be 
20 C, and cp to be 4,000 J/kg-K. We will assume the density of the coffee is 1,000 kg/m3 and, to be 
consistent with the earlier problem, the depth of the coffee is 0.15 m. The thermal conductivity of the 
coffee will be taken to be 0.6 W/m-K. 

Next, we must decide what heat transfer coefficient would best model our coffee. According to 
Condoret3, the global transfer coefficient is approximately 13 W/m2-K. 

The code for this simulation is (using pdepe) 

clear variables 
length=0.15; 
tend=3000; 
 
m = 0; 
x = linspace(0,length,201); 
t = linspace(0,tend,500); 
 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 

 
3 Jean Stephane Condoret, “Teaching Transport Phenomena Around a Cup of Coffee,” https://oatao.univ-
toulouse.fr/1455/  

https://oatao.univ-toulouse.fr/1455/
https://oatao.univ-toulouse.fr/1455/


 
figure, plot(x,u(end,:)-273) 
title(strcat('Solution at t = ', num2str(tend))) 
xlabel('x') 
ylabel('Temperature (C)') 
 
figure, plot(t,u(:,1)-273) 
xlabel('t') 
ylabel('Surface Temperature (C)') 
 
 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
k=0.6; %W/m-K 
rho=1000; %kg/m3 
cp=4000; %J/kg-K 
c=rho*cp; 
f = k*DuDx; 
s = 0; 
end 
 
function u0 = pdex1ic(x) 
u0 = 90+273; %uniform, Kelvin 
end 
 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
Ta=20+273; %K 
h=13; %W/m2-K 
pl = -h*(ul-Ta); 
ql = 1; 
pr = 0; 
qr = 1; 
end 
 

The time dependence of the surface temperature is 



 
 
And the spatial variation of the temperature after 3,000 seconds is 
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These results invite a few comments: 
 

• Note that I ran the simulation using a variety of different time steps and mesh spacings to verify 
that my initial choices were adequate. 

• These results indicate that the surface temperature after 3,000 seconds is roughly 65 C. Our 
previous model ignoring temperature gradients, predicted slightly less than 60 C after 3,000 
seconds. Given that our model of the evaporative cooling here is quite crude, and that we are 
ignoring mass loss here, this agreement indicates that we probably haven’t made any egregious 
errors in our PDE simulation. However, it also indicates that we should make an effort to include 
a better evaporation model here. 

• The second figure above indicates that there is a substantial temperature gradient within our 
mug after 3,000 seconds, so our assumptions in our earlier lumped model were not valid. To 
properly model this problem, we should probably use a parabolic pde with proper consideration 
of evaporation. This forces us to address moving boundaries, which, as stated before, is beyond 
the scope of this document. A discussion of simulations with moving boundaries (for the case of 
melting of a solid can be found here): https://theses.gla.ac.uk/75461/1/13832024.pdf 4 

 
 

  

 
4 Mohamed Zerroukat, “Numerical Computation of Moving Boundary Phenomena,” Master’s Thesis, University of 
Glasgow, 1993. 
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Partial Differential Equations: Elliptic 
Returning to our previously discussed form for a general linear partial differential equation  

𝐴𝐴
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 𝐵𝐵
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

+ 𝐶𝐶
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 𝐷𝐷
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝐸𝐸
𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

+ 𝐹𝐹𝑢𝑢 + 𝐺𝐺 = 0 

the equation is elliptic if 

𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 < 0 

These equations can typically be thought of as boundary value problems in two dimensions. Common 
examples are steady-state conduction or diffusion in two dimensions.  

As a model, consider a square region with sides of width 1 and a dependent variable u governed by 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 1 = 0 

We will solve this equation assuming u=0 on all boundaries. The exact solution for the maximum value 
of u (which occurs at the center of the region) is 

𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥 =
1
8

+
1
2
�

(−1)𝑘𝑘

𝜃𝜃𝑘𝑘3 cosh𝜃𝜃𝑘𝑘

∞

𝑘𝑘=1

 

𝜃𝜃𝑘𝑘 =
𝜋𝜋
2

(2𝑘𝑘 − 1) 

Finite Difference Approach 
To solve this equation numerically, we again employ the finite difference method. Here we will assume 
we divide our square region into a mesh with a uniform grid, such that the grid spacing in both 
directions is equal. Also, we will use the convention that a value of u on a grid point is labeled as ui,j 

where i refers to the location in the x direction and j refers to the location in the y direction. Using these 
assumptions, our finite difference approximation for the equation can be written as 

𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗

𝑠𝑠2
+
𝑢𝑢𝑖𝑖,𝑗𝑗−1 − 2𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1

𝑠𝑠2
+ 1 = 0 

or 

𝑢𝑢𝑖𝑖−1,𝑗𝑗 − 4𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1 = −𝑠𝑠2 

Where s is the mesh spacing. We write this equation at all the interior mesh points and solve the 
resulting algebraic system for the internal values of u. For coding purposes, it is convenient to number 
the values for u sequentially, so that the lower left corner is u1 and subsequent values increment moving 
left to right and then bottom to top.  

The hardest part of implementing this algorithm is working out the non-zero values of the matrix. If we 
use three divisions in each direction, then we have 4 mesh points in each direction, resulting in 16 
unknown values of u (assuming that we consider the boundary values as unknowns). The mesh for three 
divisions is pictured below, with the numbering for the u values displayed adjacent to the mesh points. 
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Given that we have 16 unknowns (counting the boundary points), the A matrix from the code will be a 
16x16 array. For the internal mesh points, our algorithm indicates that the value of u at each point will 
depend on the four nearest mesh points. If we number the equations from left to right and bottom to 
top, then the A matrix must address our 16 variables in order. The A matrix for our model equation 
becomes 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 1 -4 1 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 1 -4 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Every row here that contains the value -4 represents our finite difference equation being written at one 
of the 4 internal mesh points. The rest of the rows represent boundary points. For the internal mesh 
points, the -4 values are on the diagonal and each has an adjoining value of 1 on the off-diagonals. These 
points represent the dependence on the mesh points to the left and right of the point where the 
equation is written. So, for example, u6 will depend on u5 and u7, giving us a -4 on the diagonal and 
values of 1 on the off-diagonals. The rows representing the internal mesh points also have two more 
non-zero terms, separated from the diagonal by 4 spots. These represent the dependence on the mesh 
points above and below. So, returning to mesh point 6, we have u6 depending on u2 and u10, as shown in 
the mesh figure above. So we can see that row 6 of the A matrix has a -4 in column six and values of -1 in 
columns 2, 5, 7, and 10. The gap of 4 spots will depend on how many mesh points are in each row, so for 
a 5x5 mesh, this gap will be 5. 

We can generalize the approach to the creation of the A matrix, with respect to the difference equations 
at the internal mesh points, as follows. Consider a square region divided up into N divisions in each 
direction, leading to N+1 mesh points in each direction and a total number of variables of (N+1)2. If point 
i represents an internal mesh point, then row i will have a -4 in column i and -1 in columns i-N-1, i-1, i+1, 
and i+N+1.  

This description will change if we change the original partial differential equation, but the locations of 
the non-zero terms will not change. The discussion is easily generalized to a rectangular region, with a 
different number of mesh points in each direction. 



The rows representing the boundary points are somewhat easier to address. If a particular row in A 
represents a boundary point, we put a value of 1 on the diagonal in that row and leave everything else 
0. Then we can place the desired boundary value of u in the b vector and we’ll get the desired outcome. 

The resulting code is as follows: 

clear variables 
numterms=10; 
kvec=1:numterms; 
lam_k=1/2*(2*kvec-1)*pi; 
Tmax_a=(1/8+1/2*sum((-1).^kvec./(lam_k.^3.*cosh(lam_k)))) 
 
width=1; 
ndiv=20; 
npts=ndiv+1; 
s=width/ndiv; 
x=(0:ndiv)*s; y=x; 
A=zeros(npts^2);b=zeros(npts^2,1); 
for i=2:npts-1  
    for j=2:npts-1 
        eqnum=i+(j-1)*npts; 
        up=eqnum+npts; 
        down=eqnum-npts; 
        left=eqnum-1; 
        right=eqnum+1; 
        A(eqnum,eqnum)=-4; 
        A(eqnum,up)=1; 
        A(eqnum,down)=1;         
        A(eqnum,left)=1;         
        A(eqnum,right)=1; 
        b(eqnum)=-s^2; 
    end 
end 
for i=1:npts % bottom and top boundary points as well as diagonal 
of A 
    A(i,i)=1; 
    b(i)=0; 
    A(i+(npts-1)*npts,i+(npts-1)*npts)=1; 
    b(i+(npts-1)*npts)=0; 
end 
for j=2:npts-1 % left and right boundary points 
    A(1+(j-1)*npts,1+(j-1)*npts)=1; 
    b(1+(j-1)*npts)=0; 
    A(npts+(j-1)*npts,npts+(j-1)*npts)=1; 
    b(npts+(j-1)*npts)=0; 
end 
v=A\b; % solve for solution in v labeling 
u=reshape(v(1:npts^2),npts,npts);  %translate from v to u 



mesh(x,y,u') 
xlabel('x');ylabel('y'); 
umax_direct=max(max(u)) 

 

This produces a plot of u as follows 

 

The peak analytical value with 10 terms in the series is 0.0737 and the peak numerical value with 20 
division in each direction is 0.0735. This is a relative error of 0.002. If we increase to 40 divisions, the 
relative error drops to 5x10-4. 

One issue with this approach is the size of the matrices we are trying to employ. For the 20x20 division 
mesh, our matrix is 441x441. Hence, with a typical computer we will run out of memory at some point. 
The computation also slows considerably as the matrices grow. To combat these issues with matrix size, 
we can invoke Matlab’s sparse matrix features. Here we only define the non-zero terms in our matrix. 
Sample code for this model problem is as follows: 

clear all 
width=1; 
ndiv=200;  
npts=ndiv+1; 
s=width/ndiv; 
x=(0:ndiv)*s; y=x; % set mesh values 
A=sparse(npts^2);b=zeros(npts^2,1); 
for i=2:npts-1 % interior points 



    for j=2:npts-1 
        A(i+(j-1)*npts,i-1+(j-1)*npts)=1; 
        A(i+(j-1)*npts,i+1+(j-1)*npts)=1; 
        A(i+(j-1)*npts,i+(j-1)*npts)=-4; 
        A(i+(j-1)*npts,i+(j-2)*npts)=1; 
        A(i+(j-1)*npts,i+j*npts)=1; 
        b(i+(j-1)*npts)=-s^2; 
    end 
end 
for i=1:npts % bottom and top boundary points as well as diagonal 
of A 
    A(i,i)=1; 
    b(i)=0; 
    A(i+(npts-1)*npts,i+(npts-1)*npts)=1; 
    b(i+(npts-1)*npts)=0; 
end 
for j=2:npts-1 % left and right boundary points 
    A(1+(j-1)*npts,1+(j-1)*npts)=1; 
    b(1+(j-1)*npts)=0; 
    A(npts+(j-1)*npts,npts+(j-1)*npts)=1; 
    b(npts+(j-1)*npts)=0; 
end 
v=A\b; % solve for solution in v labeling 
u=reshape(v(1:npts^2),npts,npts);  %translate from v to u 
mesh(x,y,u') 
xlabel('x');ylabel('y'); 
umax_direct=max(max(u)) 

 

On my personal desktop computer, this script runs in about 10 seconds using 200 divisions in each 
direction, while the previous script took more than 250 seconds. Both gave the same results, with a 
relative error of about 2x10-5.  

Iterative Approach 
An alternative to this approach is an iterative algorithm. This has the advantage of permitting solution of 
nonlinear equations. The basic idea is to make a guess for the solution and then use the finite difference 
approximation to provide an iterative algorithm that, hopefully, converges to an adequate solution. For 
linear equations, this approach is reliable, but somewhat slow. For nonlinear equations, convergence 
often relies on a high quality guess to ensure convergence. 

To develop an iteration algorithm, we begin with the same finite difference approach mentioned above, 
solving for ui,j in terms of the values at the neighboring terms. We then start in one corner of our region 
and progressively update the solution as we march through the mesh points. We continue this process 
until we have reached a solution which sufficiently stable. 

For our model problem, the algorithm is as follows: 

 



𝑢𝑢𝑖𝑖,𝑗𝑗 =
𝑢𝑢𝑖𝑖−1,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1 + 𝑠𝑠2

4
 

Sample code for this approach is as follows: 

clear variables 

clear variables 
 
numterms=10; 
kvec=1:numterms; 
lam_k=1/2*(2*kvec-1)*pi; 
umax_analytical=(1/8+1/2*sum((-
1).^kvec./(lam_k.^3.*cosh(lam_k)))) 
 
width=1; 
%set number of divisions in both directions 
ndiv=100; npts=ndiv+1; 
centeri=round(ndiv/2+1); centerj=centeri; 
%calculate width of divisions in both directions 
s=width/ndiv; 
x=linspace(0,width,npts); y=x; 
u=zeros(npts,npts,'double'); 
wpeakold=0; 
numiters=10000; 
relativechange=zeros(numiters,1); 
for k=1:numiters 
    for i=2:npts-1 
        for j=2:npts-1 
            u(i,j)=(u(i,j+1)+u(i,j-1)+u(i-1,j)+u(i+1,j)+s^2)/4; 
        end 
    end 
    %track relative change in peak value of w to track 
convergence 
    newwpeak=u(centeri,centerj); 
    relativechange(k)=(abs(wpeakold-newwpeak)/newwpeak); 
    wpeakold=newwpeak; 
end 
Maximum_value_iteration=newwpeak 
relerror=(umax_analytical-
Maximum_value_iteration)./umax_analytical 
semilogy(1:numiters,relativechange, 'LineWidth',2) 
xlabel('iteration number'); ylabel('relative change in peak 
value'); 
set(gca,'FontSize',10) 
figure,mesh(x,y,u') 
xlabel('X'); ylabel('Y'); 
figure,contour(x,y,u','ShowText','on'); 
xlabel('X');ylabel('Y') 



 

For an initial guess of u=0 at all internal mesh points, this code obtains a relative error of about 10-4 for 
10,000 iterations. The convergence is indicated by the plot below. 

 

The code will converge faster if we use successive overrelaxation, which increases the change from step 
to step by a constant. In other words, whereas our previous iteration algorithm can be thought of as 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑖𝑖,𝑗𝑗 + �𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑖𝑖,𝑗𝑗� 

Now we replace this by 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝐿𝐿�𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑢𝑢𝑖𝑖,𝑗𝑗� 

where L is a constant. This equation can be written as 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝐿𝐿)𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝐿𝐿𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 

But we have the new values from our previous iteration algorithm, so we can write 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝐿𝐿)𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝐿𝐿 �
𝑢𝑢𝑖𝑖−1,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1 + 𝑠𝑠2
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The code is as follows: 

clear variables 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iteration number

10 -8

10 -6

10 -4

10 -2

10 0
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numterms=10; 
kvec=1:numterms; 
lam_k=1/2*(2*kvec-1)*pi; 
umax_analytical=(1/8+1/2*sum((-
1).^kvec./(lam_k.^3.*cosh(lam_k)))) 
 
width=1; 
ndiv=100; npts=ndiv+1; 
centeri=round(ndiv/2+1); centerj=centeri; 
s=width/ndiv; 
x=linspace(0,width,npts); y=x; 
L=1.5;      %overrelaxation value 
u=zeros(npts,npts,'double'); 
upeakold=0; 
numiters=4000; 
relativechange=zeros(numiters,1); 
for k=1:numiters 
    for i=2:npts-1 
        for j=2:npts-1 
            u(i,j)=L*(u(i,j+1)+u(i,j-1)+u(i-
1,j)+u(i+1,j)+s^2)/4+(1-L)*u(i,j); 
        end 
    end 
    %track relative change in peak value of w to track 
convergence 
    newwpeak=u(centeri,centerj); 
    relativechange(k)=(abs(upeakold-newwpeak)/newwpeak); 
    upeakold=newwpeak; 
end 
Maximum_value_overrelaxation=newwpeak 
relerror=(umax_analytical-
Maximum_value_overrelaxation)./umax_analytical 
semilogy(1:numiters,relativechange, 'LineWidth',2) 
xlabel('iteration number'); ylabel('relative change in peak 
value'); 
set(gca,'FontSize',10) 
figure,mesh(x,y,u') 
xlabel('X'); ylabel('Y'); 
figure,contour(x,y,u','ShowText','on'); 
xlabel('X');ylabel('Y') 

 

For L=1.5, this code gives a relative error comparable to the script above with only about 3,400 
iterations. 

Python Solution 
A python solution for a linear problem is as follows: 



import math 
import numpy as np 
import matplotlib.pyplot as plt 
numterms=10 
umax_sum=0 
for k in range(1, numterms): 
    theta_k=(2*k-1)*math.pi/2 
    umax_sum=umax_sum+((-1)**k/(theta_k**3*math.cosh(theta_k))) 
umax_analytical=(1/8+umax_sum/2) 
print('The maximum value of u (analytical) is ', umax_analytical) 
 
width=1 
ndiv=20 
n=ndiv+1 
h=width/ndiv 
x=np.linspace(0,width,n) 
y=np.linspace(0,width,n) 
A=np.zeros((n*n,n*n)) 
b=np.zeros(n*n) 
for i in range(1,n-1): 
    for j in range(1,n-1): 
        A[i+j*n,i-1+j*n]=1 
        A[i+j*n,i+1+j*n]=1 
        A[i+j*n,i+j*n]=-4 
        A[i+j*n,i+(j-1)*n]=1 
        A[i+j*n,i+(j+1)*n]=1 
        b[i+j*n]=-h**2 
for i in range(0,n): 
    A[i,i]=1 
    b[i]=0 
    A[i+n*(n-1),i+n*(n-1)]=1 
    b[i+n*(n-1)]=0 
for j in range(1,n-1): 
    A[j*n,j*n]=1 
    b[j*n]=0 
    A[n-1+j*n,n-1+j*n]=1 
    b[n-1+j*n]=0 
v=np.linalg.solve(A,b) 
print('The maximum value of u (numerical) is ',max(v)) 
w=v.reshape(n,n) 
plt.contour(x,y,w) 

 
Validation of Elliptic Partial Differential Equations 
In validating elliptic partial differential equations, we can still use the approaches discussed for parabolic 
partial differential equations: 



• When you are new to a technique, test it on problems where the solution is known. Start by 
picking some easy problems for which the solution is known and make sure you can match the 
known results with your numerical solution. 

• The most useful approach is something I think of as a global approach. That is, you should have 
some idea of the right answer prior to attempting the numerical solution.  

• Always make sure your solution satisfies the initial conditions. This is generally easily checked 
with a plot of the solution. 

• Convergence study 
• Benchmark against known solutions 
• Approximate full problem with something we can solve analytically 
• Test experimentally 

We’ve already solved some problems with known solutions and carried out some convergence tests. I’ll 
leave it to the reader to carry out further validation for their problems. 

 

 

 

  



Appendix 1 Using Matlab 
 

I make no attempt to describe all aspects of Matlab in this document. If you have never used Matlab, 
you might want to try another source first. For example, you could try the following online tutorial: 

https://www.mathworks.com/support/learn-with-matlab-tutorials.html  

There are many others.  

Below I describe a few idiosyncrasies of Matlab. These might be helpful as you try to develop your 
Matlab skills. 

Scripting in Matlab 
Scripts are files, carrying a .m file name extension and often referred to as m-files, that allow us to store 
Matlab commands in a text file before executing them. To demonstrate how to use m-files, I'll step 
through a typical Matlab problem. Suppose we want to find the roots of the function f(x)=cos(x). In 
other words, we're looking for values of x such that cos(x)=0. First we plot the function to get an idea of 
where the solutions are. To do this, we can take the following steps. 

First, we start Matlab. This will open up what Matlab calls the Command Window. Now we can begin 
typing in commands. Type the following: 

x=0:0.1:10; 
y=cos(x); 
plot(x,y) 
 

The first command makes a list of x values from 0 to 10 with an increment of 0.1 between each value. 
This gives us 101 values. The semicolon at the end tells Matlab to not list the values as it calculates 
them.  The second command evaluates a value for cos(x) for each of the elements in the x list. So now 
we have 101 y-values. Then we plot y vs. x. 

We're looking for roots of cos(x). These are x-locations where cos(x) is equal to 0. So in this case, we can 
see from the plot, that the function goes through 0 at about x=1.7, 4.5, and 8. Now we can use a Matlab 
function (fzero) to find the roots more accurately. Just type: 

fzero(@cos,1.7) 

We get 1.5708, which is the correct answer (it happens to be π/2). Now we can get the other two with: 

fzero(@cos,4.5) 
fzero(@cos,8) 
 

These give us x=4.7124 and 7.8540, respectively. 

Now, for preserving this work for the future, it's easier to put these commands into a script, which 
Matlab calls an m-file. To do this, go to the Matlab Command window and click on File/New and then 

https://www.mathworks.com/support/learn-with-matlab-tutorials.html


choose M-File. This will bring up a text editor, which Matlab calls the Matlab Editor. In this file, just type 
or paste the following commands: 

x=0:0.1:10; 
y=cos(x); 
plot(x,y) 
fzero(@cos,1.7) 
fzero(@cos,4.5) 
fzero(@cos,8) 
 

and then save the file as testfile.m. 

To execute the commands, return to the Command window and type the name of the file (without the 
.m extension). So in this case we just type: 

testfile 

This will run the commands in testfile.m and give the results in the Command window. This is how m-
files work. They are simply text files containing a series of Matlab commands. 

The other kind of m-file that we are interested in defines user-defined functions. For instance, if we 
want to find the roots of f(x)=3sin(x)-2, we must create an m-file which defines this function. To do this, 
go to the Editor window and click on File/New. In this new window type: 

 

function f=testfunc(x) 
f=3*sin(x)-2; 
 

Now save this file as testfunc.m. Notice how the name of the m-file must match the string in the first 
line of the function. Now we can plot this function and find a root using: 

 

x=0:0.1:10; 
y=testfunc(x); 
plot(x,y) 
fzero(@testfunc,1) 
 

This finds a root of testfunc near x=1, and the value it returns is x=0.7297. 

Matlab Arithmetic and Operators 
The final Matlab topic deals with some peculiarities in the way Matlab does arithmetic. If I were to plot 
f(x)=x2 in Matlab, I might try the following: 

 

x=0:0.1:1;  
y=x^2;   



??? Error using ==> ^ Matrix must be square.   
 

This is a problem. The same thing happens if I try to multiply x by itself, though the error message is 
slightly different. 

y=x*x;   

??? Error using ==> * Inner matrix dimensions must agree.   

As you can see, I get these strange errors about matrices. What's happening is that Matlab is taking the 
vector x and trying to square it. Due to the nature of vector arithmetic, vectors cannot be multiplied by 
themselves, so an error results. What we want to do here is square each element of the vector 
individually. To do this, you use the operators .^ and .*, as shown here: 

y=x .* x   
y = 
  Columns 1 through 7  
         0    0.0100    0.0400    0.0900    0.1600    0.2500    0.3600 
  Columns 8 through 11  
    0.4900    0.6400    0.8100    1.0000   
 
y=x .^ 2   
y = 
  Columns 1 through 7  
         0    0.0100    0.0400    0.0900    0.1600    0.2500    0.3600 
  Columns 8 through 11  
    0.4900    0.6400    0.8100    1.0000   
 

The same thing happens with division: 

 

z=1:0.1:2   
z = 
  Columns 1 through 7  
    1.0000    1.1000    1.2000    1.3000    1.4000    1.5000    1.6000 
  Columns 8 through 11  
    1.7000    1.8000    1.9000    2.0000   
x/z   
ans = 
    0.3617   
 

This does matrix division and yields a single number, which is not expected. If you want to divide 
element by element, use the ./ operator: 

x ./ z   

ans = 



  Columns 1 through 7  
         0    0.0909    0.1667    0.2308    0.2857    0.3333    0.3750 
  Columns 8 through 11  
    0.4118    0.4444    0.4737    0.5000   
 

This gives the first element of x divided by the first element of z, the second element of x divided by the 
second element of z, etc. The rule of thumb is that if you aren't expecting to do any vector or matrix 
math, you can never go wrong using .*, ./, or .^ instead of *, /, and ^. 

  

User-Defined Functions 
Matlab scripts are called m-files because they have a .m file extension. User-defined functions are saved 
as m-files, but they differ from the traditional Matlab script. A typical m-file is a sequence of Matlab 
commands that is executed, one command at a time, by the Matlab processor. A function is structured 
differently, and all have the same form 

function [output] =function_name(input) 

For example, we can create a function to evaluate x+2y as follows: 

 function result=f(x,y) 
    result=x+2*y 
 

This function would be saved as the file f.m, so that the filename matches the function name in the file. 
The result variable appears in the first line and then must be defined somewhere within the function. 
The value of result when the function terminates is then returned to the calling routine. The result can 
actually consist of a list of values, rather than one value, be we won’t address that here. 

The function listed above is just one line long, but these functions can be as long as you please. For 
example, a function that would add up the cubes of the integers 1 through N might look like this: 

function myval=sumofcubes(N) 
    ans = 0; 
    for i =  1:N 
         ans = ans + i ^ 3; 
    end 
    myval = ans; 
end 
 

To reduce the number of files produced, functions can be combined into a single m-file. However, these 
can only be called from within that file. As an example, consider the following function: 

function y=f(x) 
    z=g(x); 
    y=x+x*z; 
end 



 
function g(x) 
    g=sin(x) 
end 
 

If this is saved in a file called f.m, then we can evaluate it using something like f(3) from within the 
Matlab command window. However, we would not be able to evaluate g(3) from the command window 
because the function g(x) is only callable from the f(x) function in the same file. In this file, g(x) is 
referred to as a subfunction and such functions can only be called from within the same m-file. 

The examples in this document will all use this embedded approach. That is, all examples can be run by 
pasting the code into a single m-file and then executing that file. 

Anonymous functions 

For simple, one-line functions, there is no need to create an m-file. For example, we can do the 
following: 

g=@(x) cos(x)+cos(1.1*x) 
x=0:0.01:100; 
y=g(x); 
plot(x,y) 
 

The first line here defines a function g(x). The other lines use that function to generate a plot. If you 
need an additional parameter in the function, you can incorporate it as follows: 

x=0:0.01:100; 
delta=1.05 
gg=@(x, delta) cos(x)+cos(delta*x) 
y=gg(x, delta); 
plot(x,y) 
 

  



Appendix 2 Using Python 
Python is a general purpose programming language that is used widely. It is an interpreted language, 
which means that the code you write is parsed and executed line by line. It is designed for rapid 
development. 

For our purposes (problem solving), several companion libraries are available to assist with 
computation. A list of math functions available in Python can be found here 

https://docs.python.org/3/library/math.html  

In this document we will make frequent reference to the numpy library (http://www.numpy.org/), 
which is “the fundamental package for scientific computing with Python.” This library contains functions 
for linear algebra, random sampling, statistics, FFTs, and many others.  

We’ll also use Scipy (https://www.scipy.org/), a library for scientific computing. It includes functions for 
symbolic math, plotting, quadrature, signal processing, optimization, and special functions. 

To make use of these tools, you will need a developer environment. I use anaconda 
(https://www.anaconda.com/), which is a platform for using R and Python for data science applications. 
Within Anaconda, there is a tool called Spyder, which is an integrated development environment for 
Python. This is the tool I use for all of my Python work. Once I get the Anaconda Navigator started, I 
usually go to Spyder for writing code. In Spyder, you can enter code into the Editor and then click the 
run button near the top of the window to execute the code. Results will show up in the console on the 
lower right. 

I make no attempt to describe all aspects of Python in this booklet. If you have never used Python, you 
might want to try another source first. For example, you could try the following online tutorials. 

https://docs.python.org/3/tutorial/  

https://www.w3schools.com/python/  

https://www.tutorialspoint.com/python/index.htm  

https://www.learnpython.org/  

http://thepythonguru.com/  

There are many others. 

User-Defined Functions 
Python allows you to create your own functions. These can be handy ways to avoid having to frequently 
repeat code that you use often. They can also allow you to organize your code in a more readable, and 
therefore maintainable, form. The standard structure of a user-defined function is as follows: 

def nameOfFunc (arg1, arg2, arg3 ...): 
    statement 
    statement 
    statement 
    .... 

https://docs.python.org/3/library/math.html
http://www.numpy.org/
https://www.scipy.org/
https://www.anaconda.com/
https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/index.htm
https://www.learnpython.org/
http://thepythonguru.com/


   return; 
 

Note that the first line (the declaration) ends with a colon and the other lines are indented. Both are 
critical. The “return” at the end is not required. 

Here is sample code for a user-defined function, along with code to call the function. 

def myNumFunc(x): 
 A=1 
 B=2 
 z=A+B*x 
 return z 
y=myNumFunc(25.3) 
print(y) 
 

You can add default arguments as follows: 

def myNumFunc(x=25.3): 
 A=1 
 B=2 
 z=A+B*x 
 return z 
y1=myNumFunc() 
y2=myNumFunc(2) 
print(y1) 
print(y2) 
 

In the latter case, the first call uses the default value of x=25.3, while the second uses x=2. 
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