Homework Set 2

Jake Blanchard
blanchard@engr.wisc.edu
University of Wisconsin - Madison
Spring 2008
Problem 1

- The aerodynamic drag on a car is given by

\[F_D = \frac{1}{2} \rho C_D A V^2 \]

- \(\rho \) is air density (1.2 kg/m³), \(A \) is projected area, and \(V \) is velocity.

- Fit this data to the function to determine the product \(C_D A \)

<table>
<thead>
<tr>
<th>(V) (km/h)</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_D) (N)</td>
<td>10</td>
<td>50</td>
<td>109</td>
<td>180</td>
<td>300</td>
<td>420</td>
<td>565</td>
<td>771</td>
</tr>
</tbody>
</table>
Problem 2

A paper cup, shaped as a frustum of a cone, with $R_2 = 1.3R_1$, holds 240 cm^3 of liquid. Determine R_1 and h such that the amount of paper needed to make the cup is a minimum.
Problem 3

- Fit the US Census data from 1900 to 2000 to an 8th order polynomial.
- When does this approach predict the US population will reach zero!