Solving Initial Value Problems

Jake Blanchard
University of Wisconsin - Madison
Spring 2008
Example Problem

- Consider an 80 kg paratrooper falling from 600 meters.
- The trooper is accelerated by gravity, but decelerated by drag on the parachute.
- This problem is from Cleve Moler’s book called Numerical Computing with Matlab (my favorite Matlab book).
Governing Equation

- $m =$ paratrooper mass (kg)
- $g =$ acceleration of gravity (m/s2)
- $V =$ trooper velocity (m/s)
- Initial velocity is assumed to be zero

$$m \frac{dV}{dt} = -mg - \frac{4}{15} V^* |V|$$
Solving ODE’s Numerically

- Euler’s method is the simplest approach
- Consider most general first order ODE: \(\frac{dy}{dt} = f(t,y) \)
- Approximate derivative as \(\frac{(y_{i+1} - y_i)}{\Delta t} \)
- Then:

\[
\frac{dy}{dt} \approx \frac{y_{i+1} - y_i}{\Delta t} = f(t, y_i)
\]

\[
y_{i+1} \approx y_i + \Delta t \cdot f(t, y_i)
\]
A Problem

- Unfortunately, Euler’s method is too good to be true
- It is unstable, regardless of the time step chosen
- We must choose a better approach
- The most common is 4th order Runge-Kutta
Runge-Kutta Techniques

- Runge-Kutta uses a similar, but more complicated stepping algorithm

\[k_1 = \Delta t \cdot f(t, y_i) \]

\[k_2 = \Delta t \cdot f(t + \frac{\Delta t}{2}, y_i + \frac{k_1}{2}) \]

\[k_3 = \Delta t \cdot f(t + \frac{\Delta t}{2}, y_i + \frac{k_2}{2}) \]

\[k_4 = \Delta t \cdot f(t + \Delta t, y_i + k_3) \]

\[y_{i+1} = y_i + \frac{k_1 + 2(k_2 + k_3) + k_4}{6} \]
Approach

- Choose a time step
- Set the initial condition
- Run a series of steps
- Adjust time step
- Continue
Preparing to Solve Numerically

• First, we put the equation in the form

\[\frac{dy}{dt} = f(t, y) \]

• For our example, the equation becomes:

\[\frac{dV}{dt} = -g - \frac{4V*|V|}{15m} \]

For our example, the equation becomes:
Solving Numerically

- There are a variety of ODE solvers in Matlab
- We will use the most common: **ode45**
- We must provide:
 - a function that defines the function derived on previous slide
 - Initial value for V
 - Time range over which solution should be sought
How ode45 works

- ode45 takes two steps, one with a different error order than the other
- Then it compares results
- If they are different, time step is reduced and process is repeated
- Otherwise, time step is increased
clear all
timerange=[0 15]; %seconds
initialvelocity=0; %meters/second
[t,y]=ode45(@f,timerange, initialvelocity)
plot(t,y)
ylabel('velocity (m/s)')
xlabel('time(s)')
The Function

function rk=f(t,y)
mass=80;
g=9.81;
rk=-g-4/15*y.*abs(y)/mass;
My Solution
Practice

- Download the file `odeexample.m`
- Run it to reproduce my result
- Run again out to $t=30$ seconds
- Run again for an initial velocity of 10 meters/second
- Change to $k=0$ and run again (gravity only)
The outbreak of an insect population can be modeled with the equation below.

- R = growth rate
- C = carrying capacity
- N = # of insects
- N_c = critical population
- Second term is due to bird predation

\[
\frac{dN}{dt} = RN \left(1 - \frac{N}{C}\right) - \frac{rN^2}{N_c^2 + N^2}
\]
Parameters

- $0 < t < 50$ days
- $R = 0.55$ /day
- $N(0) = 10,000$
- $C = 10,000$
- $N_c = 10,000$
- $r = 10,000$ /day

- What is steady state population?
- How long does it take to get there?

\[
\frac{dN}{dt} = RN \left(1 - \frac{N}{C}\right) - \frac{rN^2}{N_c^2 + N^2}
\]

- Note: this is a first order ode
- Skeleton script is in file: insects.m
Insects.m

function insects

clear all

tr=[0 ??];

initv=??;

[t,y]=ode45(@f, tr, initv);

plot(t,y)

ylabel('Number of Insects')

xlabel('time')

function rk=f(t,y)

rk= ??;
Practice

- Let h be the depth of water in a spherical tank
- If we open a drain at the tank bottom, the pressure at the bottom will decrease as the tank empties, so the drain rate decreases with h
- Find the time to empty the tank
Parameters

- R = 5 ft; Initial height = 9 ft
- 1 inch hole for drain

\[
\frac{dh}{dt} = -\frac{0.0334\sqrt{h}}{10h - h^2}
\]

- How long does it take to drain the tank?
Rockets

- A rocket’s mass decreases as it burns fuel
- Find the final velocity of a rocket if:
 - \(T = 48000 \, \text{N}; \, m_0 = 2200 \, \text{kg} \)
 - \(R = 0.8; \, g = 9.81 \, \text{m/s}^2; \, b = 40 \, \text{s} \)

\[
m_0 \frac{dv}{dt} = T - mg
\]

\[
m = m_0 \left(1 - \frac{rt}{b} \right)
\]
Options

- Options are available to:
 - Change relative or absolute error tolerances
 - Maximum number of steps
 - Etc.
Some Other Matlab routines

- ode23 – like ode45, but lower order
- ode15s – stiff solver
- ode23s – higher order stiff solver
Advanced IVPs

- Second order equations
- Stiff equations
Second Order Equations

Consider a falling object with drag

\[\ddot{y} = -g - \frac{4}{15m} |\dot{y}| \]

\[y(0) = h \]

\[\dot{y}(0) = 0 \]
Preparing for Solution

- We must break second order equation into set of first order equations
- We do this by introducing new variable \((z=dy/dt)\)

\[
\begin{align*}
z &= \dot{y} \\
\dot{z} &= \ddot{y} \\
\dot{z} &= -\frac{4}{15m} z|z| - g
\end{align*}
\]
Solving

- Now we have to send a set of equations and a set of initial values to the ode45 routine
- We do this via vectors
- Let \(w \) be vector of solutions: \(w(1) = y \) and \(w(2) = z \)
- Let \(r \) be vector of equations: \(r(1) = \frac{dy}{dt} \) and \(r(2) = \frac{dz}{dt} \)
Function to Define Equation

\[
\begin{align*}
\frac{dy}{dt} &= z = w(2) \\
\frac{dz}{dt} &= -\frac{4}{15m} w(2) \cdot |w(2)| - g
\end{align*}
\]

function r=rkfalling(t,w)
...

r=zeros(2,1);
r(1)=w(2);
r(2)= -k*w(2).*abs(w(2))-g;
The Routines

tr=[0 15]; %seconds
initv=[600 0]; %start 600 m high
[t,y]=ode45(@rkfalling, tr, initv)
plot(t,y(:,1))
ylabel('x (m)')
xlabel('time(s)')
figure
plot(t,y(:,2))
ylabel('velocity (m/s)')
xlabel('time(s)')
function r=rkfalling(t,w)
mass=80;
k=4/15/mass;
g=9.81;
r=zeros(2,1);
r(1)=w(2);
r(2)= -k*w(2).*abs(w(2))-g;
General Second Order Equations

- We can write a general second order equation as shown:
 \[
 \frac{d^2 y}{dt^2} = f(t, y, \frac{dy}{dt})
 \]
 or
 \[
 \frac{dy}{dt} = z
 \]
 \[
 \frac{dz}{dt} = f(t, y, z)
 \]

- To solve:
 - Define f
 - Set initial conditions
 - Set time range
The Routines

tr=[0 15]; %seconds
initv=[600 0]; %start 600 m high
[t,y]=ode45(@rKFalling, tr, initv)
plot(t,y(:,1))
ylabel('x (m)')
xlabel('time(s)')
figure
plot(t,y(:,2))
ylabel('velocity (m/s)')
xlabel('time(s)')

function r=rKFalling(t,w)
mass=80;
k=4/15/mass;
g=9.81;
r=zeros(2,1);
r(1)=w(2);
r(2)= -k*w(2).*abs(w(2))-g;
Practice

- Return to paratrooper problem.
- Download ode2ndOrder.m
- Run to duplicate earlier results for velocity
- Change initial velocity to 10 m/s and run again

\[
m \frac{d^2 y}{dt^2} = -mg - \frac{4}{15} \frac{dy}{dt} \frac{dy}{dt}
\]
Practice-nonlinear pendulum

- $r = 1 \text{ m}; \ g = 9.81 \text{ m/s}^2$
- Initial angle = $\pi/8, \pi/2, \pi-0.1$

\[\frac{d^2 \theta}{dt^2} = -\frac{g}{r} \sin(\theta)\]
For systems of first order ODEs, just define both equations.
Practice

• Consider an ecosystem of rabbits \(r \) and foxes \(f \). Rabbits are fox food.
• Start with 300 rabbits and 150 foxes
• \(\alpha = 0.01 \)

\[
\begin{align*}
\frac{dr}{dt} &= 2r - \alpha rf \\
\frac{df}{dt} &= -f + \alpha rf
\end{align*}
\]

function \(z = \text{rkfox}(t, w) \)
alpha=0.01;
r=zeros(2,1);
z(1)=2*w(1)-alpha*w(1)*w(2);
z(2)= -w(2)+alpha*w(1)*w(2);
Approach

- Start with `ode2ndOrder.m`
- Modify with function from previous slide
- Put in time range \((0<t<15)\) and initial conditions
Higher Order Equations

Suppose we want to model a projectile

\[\ddot{x} = -k \dot{x} V \]

\[\ddot{y} = -k \dot{y} V - g \]

\[V = \sqrt{\dot{x}^2 + \dot{y}^2} \]
Now we need 4 1st order ODEs

\[
\begin{align*}
\dot{x} &= s \\
\dot{s} &= -k \ s \ V \\
\dot{y} &= z \\
\dot{z} &= -k \ z \ V - g \\
V &= \sqrt{s^2 + z^2}
\end{align*}
\]
clear all;
tspan=[0 1.1]
wnot(1)=0; wnot(2)=10;
wnot(3)=0; wnot(4)=10;
[t,y]=ode45('rkprojectile',tspan,wnot);
plot(t,y(:,1),t,y(:,3))
figure
plot(y(:,1),y(:,3))
function r=rkprojectile(t,w)
g=9.81;
x=w(1); s=w(2); y=w(3); z=w(4);
vel=sqrt(s.^2+z.^2);
r= zeros(4,1);
r(1)=s;
r(2)=-s*vel;
r(3)=z;
r(4)=-z*vel-g;
Questions