About Matlab

- Origins are in linear algebra
- Much functionality added later
- Runs on all platforms
- Many toolboxes exist
Matlab Demos

- Type “demo”
- Poke around…
Matlab GUls

- Matlab has a tool for creating Graphical User Interfaces
- You can start it up by typing `guide` at the command prompt
- Let me know if you would like to know how to do these. I’ve got a video that describes a simple example.
Matlab Toolkits

- Simulink: dynamic systems simulator
- Stateflow: event-driven systems
- DSP, Signal Processing, Image Processing
- Control, Optimization
- PDE, Financial, Mapping
- and many more
- We’ll discuss more of this later
Starting Out with Matlab

- Start Matlab - you’ll see the “Command Window”
- Type the following:

\[
A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \\
B = \text{inv}(A) \\
A \times B
\]
Plotting

- Make vectors for x and y axis and then plot them

\[
x = 0:0.1:10 \\
y = \sin(x) \\
plot(x,y)
\]
The User Interface

- You can use Matlab interactively
- Just type commands and view results
- Difficulty is saving session
- I prefer to use scripts (m-files)
- I use the built-in editor
My Approach

- Put commands into m-file
- Run from main Matlab window
- Edit m-file
- Rerun
- Repeat to perfection
- Save and turn in m-file
Demo
Key Interface Elements

- Command Window
- Current Directory
- Workspace
- Command History
- Editor
- Save to m-file from history window
- File/Save As…
Matlab Path

- When you run a script, Matlab looks in the Matlab path for the file.
- It assumes a .m extension.
- Path is at top of command window.
Practice with m-files

- Download the file `falling.m` from course web site
- Put them somewhere in your path
- Type `falling` in command window
The problem

- These scripts are calculating elevation for 80 kg paratrooper falling from 600 meters.
- Chute opens after 5 second free-fall.
- Drag coefficient increases by factor of 4 with chute open.
- Chute opens at ~480 meters and trooper reaches ground at about 14 s.
mass=80;
height=600;
gravity=9.81;
tsplit=5;
alpha=1/15;
trange=[0 tsplit];
inits=[height,0];
[t,y]=ode45(@fallfunc,trange,inits);
alpha=4/15;
trange=[tsplit 2.85*tsplit];
inits=[y(end,1) y(end,2)];
[t2,y2]=ode45(@fallfunc,trange,inits);
Question

- What is impact velocity?
- What is impact velocity if chute doesn’t open? [set time before chute opens (tsplit) to longer time and read off velocity when height=0]
Variables

- Up to 63 characters
- Must begin with letter
- Contain letters, digits, and underscore
- No punctuation
- Case-sensitive
- No spaces

A = 5
B = 3
C = A + B
C = C + 3
Pre-Defined Constants

- \(\pi \)
- \(i \)
- \(j \)

\[\sqrt{-1} \]
Managing Variables and Screen

- **clear** – removes variables from memory
- **clear var1 var2** – removes specific variables from memory
- **clc** – clear screen
- **who** – lists currently defined variables
- up arrow will recall commands and TAB will do name completion
Formatting output

- **format short**
 - 3.1416

- **format long**
 - 3.141592653589793

- **format short E**
 - 3.1416e+000

- **format hex**
 - 400921fb54442d18

- **format bank**
 - 3.14

- **format rat**
 - 355/113
More output options

- **disp** – displays value of variable without variable name

```matlab
>> vec=0:5;
>> disp(vec)
    0  1  2  3  4  5
>> disp(pi)
   3.1416
>> disp('This is "pi" in short format')
This is "pi" in short format
```
fprintf('The number pi is %f\n', pi)
The number pi is 3.141593
fprintf('The number pi is %6.2f\n', pi)
The number pi is 3.14
fprintf('The number pi is %6.2e\n', pi)
The number pi is 3.14e+000
Getting help

- Go to help menu or type `help plot`
Practice

- Write a script to calculate the pressure of 1 mol of chlorine gas in a 22.4 liter container at 273 K

- Ideal gas law

\[P = \frac{nRT}{V} \quad R = 0.08206 \]

- van der Waals gas law

\[P = \frac{nRT}{V - nb} - \frac{an^2}{V^2} \quad a = 6.49 \quad b = 0.0562 \]
Vectors and Matrices

- Think of vectors as lists
- Think of matrices as arrays (lists of lists)

\[\mathbf{V}_1 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix} \]
\[\mathbf{V}_2 = 0:4 \]
\[\mathbf{M}_1 = \begin{bmatrix} 1 & 0 & 1 ; 0 & 1 & 0 ; 0 & 0 & 1 \end{bmatrix} \]
\[\mathbf{M}_2 = \text{ones}(3) \]
Built-in Matrices

- \texttt{zeros(m,n)} – filled with 0’s
- \texttt{ones(m,n)} – filled with ones
- \texttt{eye(n)} – identity
- \texttt{rand(n,m)} – random numbers
- \texttt{randn(n,m)} – normally distributed
You can pick out individual components of vectors and matrices

- \(\text{V1(3)} \) – third element
- \(\text{M1(2,3)} \) – row 2, column 3
- \(\text{M1(:,2)} \) – all rows, column 2
- \(\text{M1(1,:)} \) – row 1, all columns
Practice

- Generate vector \((x)\) of positive integers less than 50
- Plot \(\exp(x)\)
- Plot \(\exp(x^2)\)
- Plot \(\exp(1/x)\)

Create x vector
Then:
\[
y = \exp(x) \\
\text{plot}(x,y)
\]
The “.” operators

- Using a dot before an operator will force element by element math, as opposed to vector math.

\[A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \]
\[A \cdot A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \]
\[A \cdot A = \begin{bmatrix} 1*1+3*2 & 1*3+3*4 \\ 2*1+4*2 & 2*3+4*4 \end{bmatrix} \]
\[A \cdot A = \begin{bmatrix} 7 & 15 \\ 10 & 22 \end{bmatrix} \]
\[A \cdot A = \begin{bmatrix} 1*1 & 3*3 \\ 2*2 & 4*4 \end{bmatrix} \]
\[A \cdot A = \begin{bmatrix} 1 & 9 \\ 4 & 16 \end{bmatrix} \]
Vector Math

- Try this:
 \[v = 0 : 5 \]
 \[z = v \times v \]

- To square each element:
 \[z = v \times \times v \]

- Also ./ and .^
Practice

• Try again to plot $\exp(x^2)$ for $0<x<50$
Practice

- Use data below to find average and maximum speeds for the 5 routes
- (Divide distance by time, term-by-term)
- Average of vector is $\text{mean}(v)$
- Maximum is $\text{max}(v)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (mi)</td>
<td>560</td>
<td>440</td>
<td>490</td>
<td>530</td>
<td>370</td>
</tr>
<tr>
<td>Time (hr)</td>
<td>10.3</td>
<td>8.2</td>
<td>9.1</td>
<td>10.1</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Vector and Matrix Functions

- $\text{length}(A)$ – length of vector
- $\text{size}(A)$ – size of matrix
- $\text{diag}(A)$ – diagonal of matrix
- $\text{inv}(A)$ – inverse of matrix
Functions

exp, log, log10, sqrt

sin, cos, tan, asin, acos, atan

max, min, mean, median, sum, prod, sort
Plotting – Again

• Make vectors for x and y axis and then plot them

\[x=0:0.1:10 \]
\[y=\sin(x) \]
\[\text{plot}(x,y,\text{--rs}',\text{'LineWidth'},2) \]
fplot(@x x^2+4*sin(2*x)-1,[-3,3])
More Graphics

- Adding axes, labels, and legends
  ```matlab
  xlabel('Time (seconds)')
  legend('\alpha = 1')
  axis([0 3 -1 1])
  ```
- Put this in after plot command
- Opening a new plot window
  ```matlab
  figure
  ```
Practice

- Plot $\sin(1/x)$ from 0 to 0.2
- Put in labels, a title, and a legend
Grouping Plots

\[x=0:0.01:10; \]
\[y=\sin(x); \]
\[z=\cos(x); \]
\[\text{subplot}(2,1,1); \]
\[\text{plot}(x,z); \]
\[\text{ylabel}('\cos(x)'); \]
\[\text{subplot}(2,1,2); \]
\[\text{plot}(x,y); \]
\[\text{ylabel}('\sin(x)'); \]
\[\text{xlabel}('x'); \]
Surface Plots

```matlab
[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([-3 3 -3 3 -10 5])
```
Practice

- Plot $\cos(x^2+y^2)$ for $-3 < x < 3$ and $-3 < y < 3$
- Commands on next page will generate appropriate “z” matrix
- You just need to add in a `surf(x,y,z)` command
- File `ForSurfPlot.m` will set up the matrices
Generating Values for Surface Plot (we will learn this later)

\[N = 100 \]
\[\text{lowX} = -3 \]
\[\text{highX} = 3 \]
\[\text{for } i = 1: N \]
\[\quad \text{for } j = 1: N \]
\[\quad \quad x(i,j) = \text{lowX} + i \times (\text{highX} - \text{lowX}) / N; \]
\[\quad \quad y(i,j) = \text{lowX} + j \times (\text{highX} - \text{lowX}) / N; \]
\[\quad \quad z(i,j) = \cos(x(i,j)^2 + y(i,j)^2); \]
\[\quad \text{end} \]
\[\text{end} \]
Other Plot Types

- Vertical bar
- Horizontal bar
- Stairs
- Stem
- Pie
- Histogram
- polar
Adjusting Plots Interactively

- Demo
Animation

- To animate a plot, simply generate a series of snapshots and then use “move” to show them
- Example, animate \(\sin(x) \cdot \sin(2\pi t/20) \)
- Get file `anim.m`
Animation Example

```matlab
x=0:pi/100:2*pi;
y=sin(x);
plot(x,y)
axis tight
set(gca,'nextplot','replacechildren');
% Record the movie
for j = 1:20
    plot(x,sin(2*pi*j/20)*y)
    F(j) = getframe;
end
% Play the movie two times
movie(F,2)
```
Questions?